Analiza częstotliwościowa

Analiza częstotliwościowa – stosuje się ją do określenia składowych częstotliwościowych zawartych w przebiegu czasowym funkcji. W bardzo znacznym stopniu stosowana jest ona w przetwarzaniu sygnałów. Przedstawienie sygnału w dziedzinie częstotliwości nazywane jest widmem sygnału.

Podstawy analizy częstotliwościowej stworzył francuski matematyk Jean Baptiste Joseph Fourier – są to szeregi Fouriera i transformacja Fouriera. Analiza metodami Fouriera zarówno przy pomocy szeregów trygonometrycznych, jak i transformacji jest jedną z najstarszych dziedzin analizy matematycznej[1]. W przypadku przetwarzania sygnałów analiza częstotliwościowa dotyczy zarówno sygnałów analogowych, jak i cyfrowych.

Dla sygnałów analogowych korzystamy z szeregu Fouriera bądź z całkowego przekształcenia Fouriera. W przypadku sygnałów cyfrowych do określenia składowych częstotliwościowych przebiegu czasowego używamy dyskretnej transformaty Fouriera.

Sygnały analogoweEdytuj

Sygnały analogowe podobnie jak funkcje matematyczne możemy podzielić na okresowe i nieokresowe. Dla analogowych sygnałów okresowych, korzystając z szeregu Fouriera można określić wartości amplitud częstotliwości podstawowej i harmonicznych – jest to powód dla którego analiza częstotliwościowa nazywana jest również analizą harmoniczną.

Dla sygnałów analogowych nieokresowych analiza częstotliwościowa dokonywana jest za pomocą transformacji Fouriera.

Przykład 1Edytuj

Obliczyć widmo sygnału prostokątnego danego ogólnym wzorem:

 

Transformacja Fouriera:

 

Podstawiając do powyższego wzoru, otrzymujemy następujące obliczenia:

 

Otrzymujemy w ten sposób wzór, w którym   jest amplitudą widma, natomiast   stanowi jego część fazową.

Przykład 2Edytuj

Obliczyć widmo sygnału danego wzorem:

 
 

Podstawiając odpowiednie granice całkowania otrzymujemy widmo sygnału  

 

Przykład 3Edytuj

Obliczyć widmo Delty Diraca:

 
 

Przykład 4Edytuj

Dane są sygnały o wzorach:

 
 

Obliczyć widmo sygnału:

 

Widmo sygnału  

 

Widmo sygnału  

 

Korzystając z operacji splotu dwóch funkcji, otrzymujemy wzór widma sygnału  

 

Sygnały cyfroweEdytuj

Przy analizie częstotliwościowej sygnałów cyfrowych posługujemy się dyskretną transformacją Fouriera. W celu zmniejszenia złożoności obliczeniowej używana jest również szybka transformacja Fouriera.

Przykład 1Edytuj

Przeprowadzić analizę częstotliwościową sygnału:

 

Korzystając ze wzoru na DFT:

 

oraz macierzy  

obliczamy macierz  

Następnie wymnażając macierz   przez wektor  

 

otrzymujemy wartości kolejnych próbek widma  

 
 
 
 

czyli:

 

gdzie amplituda to:

 

a część fazowa to:

 

Zastosowanie analizy częstotliwościowejEdytuj

 
Analiza częstotliwościowa sygnałów mowy – widmo słowa „osiem”

Analiza częstotliwościowa jest wykorzystywana w wielu dziedzinach. Najczęściej stosowana jest w analizie sygnałów akustycznych, takich jak określanie charakterystyk częstotliwościowych słuchu, hałasu czy akustyki pomieszczeń. Co więcej, stanowi ważną część profesjonalnych programów będących cyfrowymi stacjami roboczymi do obróbki dźwięków audio (np. Cubase, Pro Tools, FL Studio itp.).

Wykorzystywana jest również w przetwarzaniu sygnałów mowy. Funkcje będące modelami mowy, są dzięki wspomnianym metodom Fouriera zamieniane na ciągi wartości liczbowych lub funkcje, prezentujące częstotliwości zawarte w analizowanej mowie[1]. Wyznaczanie częstotliwości zawartych w przebiegu czasowym sygnału mowy, pozwala na jego dalszą analizę i prowadzi do powstawania wielu nowoczesnych rozwiązań takich jak np. interfejsy głosowe dla osób niepełnosprawnych, syntezatory mowy itp.

PrzypisyEdytuj

  1. a b Przetwarzanie mowy, B. Ziółko, M. Ziółko, Wydawnictwa AGH, Kraków 2011.

BibliografiaEdytuj

  • Przetwarzanie mowy, B. Ziółko, M. Ziółko, Wydawnictwa AGH, Kraków 2011.
  • J. Szabatin, Podstawy teorii sygnałów, wyd. 4, Wydawnictwa Komunikacji i Łączności, Warszawa 2002.
  • Alan V. Oppenheim, Ronald W. Schafer, Cyfrowe przetwarzanie sygnałów, Wydawnictwa Komunikacji i Łączności, Warszawa 1979.

Linki zewnętrzneEdytuj