Paradoks Banacha-Tarskiego

twierdzenie matematyczne
Paradoks Banacha-Tarskiego: Kula może być pocięta na skończenie wiele kawałków, z których można złożyć dwie kule identyczne z kulą wyjściową

Paradoks Banacha-Tarskiego (paradoks Hausdorffa-Banacha-Tarskiego, paradoksalny rozkład kuli) – paradoksalne twierdzenie teorii miary sformułowane i udowodnione przez Stefana Banacha i Alfreda Tarskiego w 1924 roku.

Twierdzenie głosi, że trójwymiarową kulę można „rozciąć” na skończoną liczbę części (wystarczy ich sześć), a następnie używając wyłącznie przesunięć i obrotów można złożyć z tych części dwie kule o takich samych promieniach jak promień kuli wyjściowej.

Paradoksalne jest to, że z jednej strony w wyniku operacji rozcinania, przesunięcia, obracania i składania następuje podwojenie objętości kuli, z drugiej użyte operacje przesunięcia i obrotu są izometriami i zachowują objętość brył.

Źródło paradoksu tkwi w tym, że części, na które dzielona jest kula, są zbiorami niemierzalnymi (w sensie Lebesgue’a) tj. nie mają objętości i nie stosuje się do nich addytywność miary, zgodnie z którą suma miar rozłącznych zbiorów mierzalnych jest miarą sumy mnogościowej tych zbiorów.

Twierdzenie Banacha-Tarskiego i pokrewne wyniki uświadamiają ograniczenia możliwych rozszerzeń miary Lebesgue’a, które miałyby pozostać niezmiennicze względem pewnych przekształceń przestrzeni euklidesowych[1].

Paradoks Banacha-Tarskiego ma swoją popularną wersję: ziarnko grochu może być podzielone na skończenie wiele części, z których (przez izometrie) można złożyć kulę wielkości Słońca.

W jednej z książek dotyczących paradoksu Banacha-Tarskiego zamieszczone jest motto[1] wskazujące jeden ze sposobów rozwiązania problemu delijskiego:

Delijczycy: W jaki sposób możemy uwolnić się od zarazy?
Wyrocznia delficka: Powiększcie dwukrotnie objętość ołtarza Apolla zachowując jego kształt sześcianu!
Banach i Tarski: Czy możemy użyć aksjomatu wyboru?

Rys historycznyEdytuj

Wstępne przykładyEdytuj

  • W zasadzie już Galileusz[8] zauważył, że zbiór liczb naturalnych   może być podzielony na dwie części z których każda może być odwzorowana w sposób wzajemnie jednoznaczny na cały zbiór   Rozważmy na przykład zbiór liczb parzystych   i jego dopełnienie, czyli zbiór liczb nieparzystych   Funkcja   jest bijekcją z   na   oraz funkcja   jest bijekcją z   na  
  • Każde dwa nietrywialne odcinki na prostej rzeczywistejrównoliczne (w ZF) i funkcja ustalająca równoliczność jest bardzo porządna (np. w przypadku dwóch przedziałów otwartych może to być funkcja liniowa). Zatem każdy nietrywialny odcinek może być podzielony na dwie rozłączne części (odcinki) i każda z tych części może być odwzorowana w sposób wzajemnie jednoznaczny na odcinek wyjściowy. Podobna obserwacja ma miejsce w odniesieniu do prostokątów, prostopadłościanów i wielu innych figur geometrycznych.
  • Rozważmy zbiór Vitalego na okręgu jednostkowym. Najwygodniej jest ten zbiór opisać, jeśli zinterpretujemy punkty płaszczyzny jako liczby zespolone. Nasz okrąg to zbiór   Określmy na tym zbiorze relację równoważności   przez warunek
  wtedy i tylko wtedy gdy   jest liczbą wymierną.
Zakładając aksjomat wyboru, możemy znaleźć zbiór   który jest selektorem klas abstrakcji relacji   Zatem zbiór   spełnia następujące dwa warunki:
(a)   oraz
(b)  
Przedstawmy zbiór liczb wymiernych w przedziale   jako sumę   dwóch zbiorów nieskończonych. Wówczas każdy ze zbiorów     jest równoliczny ze zbiorem   a więc możemy wybrać funkcje wzajemnie jednoznaczne   i   Rozważmy zbiory
  i  
Wówczas     oraz funkcje
  i
 
są bijekcjami.

W powyższych przykładach użyte funkcje wzajemnie jednoznaczne, nawet jeśli są bardzo porządne, jednak nie zachowują odległości punktów (czyli nie są izometriami). Zatem przykłady te nie wzbudzają żadnego zdziwienia: odpowiednie zbiory są powiększone/rozdmuchane przez odpowiadające im funkcje. Można jednak zapytać, czy istnieją podobne rozkłady z dodatkową własnością, taką że funkcje ustalające równoliczność kawałków z wyjściowym zbiorem są izometriami (ze względu na metryki naturalne).

  • Zbiór Vitalego, dyskutowany wcześniej, pozwala zbudować przykład podziału na przeliczalnie wiele części, tak że z dowolnych nieskończenie wielu kawałków można złożyć okrąg wyjściowy, używając tylko obrotów. Niech zbiór   będzie wybrany jak powyżej. Dla   połóżmy   Wówczas   jest przeliczalną rodziną parami rozłącznych podzbiorów okręgu   Przypuśćmy, że   jest zbiorem nieskończonym. Ustalmy bijekcję   i zauważmy że
  gdzie   jest obrotem o kąt  
  • Mazurkiewicz i Sierpiński podali w 1914 następujący przykład paradoksalnego (ze względu na izometrie) podzbioru płaszczyzny. Jak wcześniej, utożsamiamy płaszczyznę ze zbiorem liczb zespolonych. Niech
 
 
 
Można łatwo sprawdzić, że     (przypomnijmy, że   jest liczbą przestępną) oraz
  gdzie   jest obrotem, a
  gdzie   jest przesunięciem.

Rozkłady paradoksalneEdytuj

DefinicjeEdytuj

Przypuśćmy, że grupa   działa na zbiorze  

  • Powiemy, że zbiór   jest paradoksalny ze względu na działanie grupy G, jeśli można znaleźć parami rozłączne zbiory   (gdzie  ) oraz elementy   grupy   takie że
  oraz  

Intuicyjnie,   jest paradoksalny ze względu na działanie grupy   jeśli można podzielić zbiór   na skończenie wiele kawałków, z których można złożyć dwie kopie zbioru   używając bijekcji wyznaczonych przez elementy grupy  

  • Zbiór   jest σ-paradoksalny ze względu na działanie grupy G, jeśli można znaleźć parami rozłączne zbiory   oraz elementy   grupy   takie że
  oraz  
  • Niech   Powiemy, że zbiory   i  kawałkami  -równoważne, jeśli można wybrać       oraz   tak że
(a)   dla  
(b)    
(c)   dla każdego  

PrzykładyEdytuj

  • Zakładając aksjomat wyboru, okrąg jednostkowy jest σ-paradoksalny ze względu na grupę obrotów   okręgu. (Zobacz dyskusję zbioru Vitalego wcześniej.)
  • Zbiór   podany przez Mazurkiewicza i Sierpińskiego (dyskutowany wcześniej) jest paradoksalny ze względu na grupę izometrii płaszczyzny.
 
Zbiory   i   zaznaczone na grafie Cayleya grupy wolnej  
 
Animacja dowodu twierdzenia Banacha-Tarskiego za pomocą grafu Cayleya opartego na fraktalu
  • Rozważmy grupę wolną   o dwóch generatorach   i   działającą na sobie przez mnożenie z lewej strony. (Tak więc elementowi   odpowiada bijekcja  ) Dla   niech   będzie zbiorem wszystkich elementów grupy   (słów w formie nieskracalnej) które zaczynają się od   Zauważmy, że
  i zbiory występujące w tej sumie są rozłączne, oraz
  i  
Zatem   jest zbiorem paradoksalnym ze względu na działanie grupy  

TwierdzeniaEdytuj

W poniższych stwierdzeniach zakładamy aksjomat wyboru (tzn. są to twierdzenia ZFC).

  • Przypuśćmy, że
(a) grupa   działa na zbiorze   w taki sposób że żadne z odwzorowań   nie ma punktów stałych (dla  ),
(b)   jest zbiorem paradoksalnym ze względu na działanie grupy   (przez mnożenie z lewej strony).
Wówczas zbiór   jest paradoksalny ze względu na działanie grupy  
  • Z powyższego twierdzenia wynika, że jeśli grupa wolna   działa na zbiorze   w taki sposób, że żadne z odwzorowań   nie ma punktów stałych (dla  ), to zbiór   jest paradoksalny ze względu na działanie grupy  
  • Istnieje przeliczalny podzbiór   sfery jednostkowej   taki, że zbiór   jest paradoksalny ze względu na działanie grupy obrotów  
  • Jeśli   jest przeliczalny, to zbiory   i   kawałkami  -równoważne.

Bezpośrednio z dwóch powyższych twierdzeń możemy wywnioskować twierdzenie Banacha-Tarskiego:

  • Sfera jednostkowa   jest paradoksalna ze względu na działanie grupy obrotów  

Kolejne wyniki są wnioskami z powyższego twierdzenia. Niech   będzie grupą izometrii przestrzeni  

  • Każda kula w   jest paradoksalna ze względu na działanie grupy   Również sama przestrzeń   jest paradoksalna ze względu na działanie tej grupy.
  • Jeśli  zbiorami ograniczonymi o niepustych wnętrzach, to zbiory     są kawałkami  -równoważne.

Zobacz teżEdytuj

PrzypisyEdytuj

  1. a b Wagon, Stan: The Banach-Tarski paradox, w: „Encyclopedia of Mathematics and its Applications”, 24. Cambridge University Press, Cambridge, 1985. ​ISBN 0-521-30244-7​.
  2. Vitali, Giuseppe: Sul problema della misura dei gruppi di punti di una retta. Bologna: Gamberini e Parmeggiani, 1905.
  3. Mazurkiewicz, Stefan; Sierpiński, Wacław: Sur un ensemble superposable avec chacune de ses deux parties. „C. R. Acad. Sci. Paris”. 158 (1914), s. 618–619.
  4. Hausdorff, Felix: Bemerkung über den Inhalt von Punktmengen. „Math. Ann.” 75 (1915), s. 428–433.
  5. Banach, Stefan; Tarski, Alfred: Sur la décomposition des ensembles de points en parties respectivement congruentes, „Fundamenta Mathematicae” 6 (1924), s. 244–277. Dostępna w formacie pdf tutaj.
  6. Pawlikowski, Janusz: The Hahn-Banach theorem implies the Banach-Tarski paradox. „Fundamenta Mathematicae” 138 (1991), s. 21–22.
  7. Dougherty, Randall; Foreman, Matthew. Banach-Tarski decompositions using sets with the property of Baire. „J. Amer. Math. Soc.” 7 (1994), s. 75–124.
  8. Galileo Galilei. Discorsi e dimostrazioni matematiche, intorno à due nuove scienze, 1638.

Linki zewnętrzneEdytuj