Pochodna ułamkowa

Pochodna ułamkowa – uogólnienie pojęcia pochodnej funkcji n-tego rzędu na rząd rzeczywisty.

Pochodną ułamkową najprościej zdefiniować poprzez różniczkowanie ułamkowe szeregu Taylora wyraz po wyrazie. Niech

wtedy pochodna n-tego rzędu

Zadanie zdefiniowania pochodnej ułamkowej sprowadza się do znalezienia funkcji która staje się silnią dla argumentu całkowitego. Taka funkcja to funkcja .

Dla rzeczywistego definiujemy więc

Dla dowolnej funkcji rozwijalnej w szereg Taylora

można ją zróżniczkować wyraz po wyrazie zgodnie z powyższą definicją, co jest równoważne

licząc całki również wyraz po wyrazie.

Łatwo sprawdzić ze pochodna ułamkowa jest ciągła względem jej rzędu.