Otwórz menu główne

Prędkość kosmiczna

Prędkość kosmicznaprędkość początkowa, jaką trzeba nadać dowolnemu obiektowi, by dzięki energii kinetycznej pokonał on grawitację wybranego ciała niebieskiego.

Obliczenia wykonuje się przy założeniu, że nie ma innych ciał niebieskich, i pominięciu sił oporu.

Pierwsza prędkość kosmicznaEdytuj

Zobacz też: prędkość orbitalna.

Pierwsza prędkość kosmiczna to najmniejsza prędkość, jaką należy nadać obiektowi względem przyciągającego je ciała niebieskiego, aby poruszał się on po zamkniętej orbicie. Z tak określonych warunków wynika, że dla ciała niebieskiego o kształcie kuli orbita będzie okręgiem o promieniu minimalnie większym niż promień tego ciała. Obiekt staje się wtedy satelitą ciała niebieskiego.

Wyprowadzenie wzoruEdytuj

Pierwszą prędkość kosmiczną można wyznaczyć, zauważając, że podczas ruchu orbitalnego po orbicie kołowej siła grawitacji stanowi siłę dośrodkową

 
 
 

gdzie:

 stała grawitacji
 masa ciała niebieskiego
  – masa rozpędzanego ciała, czyli satelity krążącego wokół ciała niebieskiego
  – promień planety.

Inny sposób wyprowadzenia wzoru opisano poniżej.

Pewne ciało znajduje się na powierzchni pewnego ciała niebieskiego. Odległość od jego środka wynosi   Ciało to porusza się z pewną prędkością   w kierunku równoległym do stycznej powierzchni ciała niebieskiego w punkcie, w którym się aktualnie znajduje. Po upływie różniczki czasu   pokonuje różniczkę drogi   osiągając jednocześnie różniczkę wysokości   od powierzchni ciała niebieskiego, tak więc odległość od jego środka wynosi wówczas   Nietrudno zauważyć, że po połączeniu następujących 3 punktów: punktu początkowego ciała, punktu w którym znajduje się ciało po upływie różniczki czasu, a także punktu środka ciała niebieskiego, otrzyma się trójkąt prostokątny. Korzystając wówczas z twierdzenia Pitagorasa, prawdziwa jest zależność:

 

Po przebyciu różniczki drogi   znajdując się na wysokości   ciało zaczyna spadać. Zadanie polega więc na wyznaczeniu prędkości   z jaką ma przebyć ową różniczkę drogi, co sprowadza się do wyznaczenia czasu jej przebycia. Czas ten musi być równy czasowi spadania z różniczki wysokości tak, aby po jego upływie ciało nadal znajdowało się na powierzchni ciała niebieskiego, dzięki czemu utrzyma się na jego orbicie. Wysokość od powierzchni ciała niebieskiego   na której znajduje się ciało, z której upada ono na powierzchnię po upływie czasu   dla zaniedbywalnie małych wysokości, wyraża się wzorem:

 

gdzie   jest przyspieszeniem grawitacyjnym występującym na powierzchni ciała niebieskiego. Wzór ten jest tym bardziej prawdziwy dla różniczek wysokości   i czasu   gdyż różniczka wysokości dąży do 0, a więc   jest więc zaniedbywalnie mała

 

Podstawiając za   powyższy wzór do otrzymanej zależności wynikającej z twierdzenia Pitagorasa, otrzymujemy:

 

Od obu stron równania odejmujemy  

 

W ruchu jednostajnym, prędkość jest pochodną przebytej drogi po czasie

 

Obie strony równania podnosimy do kwadratu

 

Podstawiając za   powyższy wzór, otrzymujemy:

 

Ponieważ   więc   Ostatecznie otrzymujemy:

 

Pierwiastkujemy obie strony równania

 

Wartość przyspieszenia grawitacyjnego wyznaczyć można z zależności:

 

gdzie:

  – stała grawitacji
  – masa ciała niebieskiego.

Podstawiając za   powyższą zależność, otrzymujemy ostatecznie wzór na pierwszą prędkość kosmiczną

 
 

Przykładowe wartości I prędkości kosmicznejEdytuj

  • Ziemia:  
  • Księżyc:  
  • Słońce:  

Druga prędkość kosmicznaEdytuj

Osobny artykuł: Prędkość ucieczki.

Druga prędkość kosmiczna to prędkość, jaką należy nadać obiektowi, aby opuścił na zawsze dane ciało niebieskie, poruszając się dalej ruchem swobodnym. Inaczej mówiąc, jest to prędkość, jaką trzeba nadać obiektowi na powierzchni tego ciała niebieskiego, aby tor jego ruchu stał się krzywą otwartą (parabolą lub hiperbolą). Obliczamy ją, porównując energię obiektu znajdującego się na powierzchni ciała niebieskiego oraz w nieskończoności. Energia w nieskończoności równa jest 0 (zarówno energia kinetyczna, jak i energia potencjalna pola grawitacyjnego), zatem na powierzchni sumaryczna energia też musi się równać 0:

 

gdzie:

  – masa ciała niebieskiego
  – masa wystrzeliwanego ciała
  – prędkość początkowa
  – promień ciała niebieskiego.

Stąd wynika:

 

Dla Ziemi II prędkość kosmiczna przyjmuje wartość

 

Otrzymana stąd wartość nie oznacza, że nie można oddalić się od Ziemi na dowolną odległość z mniejszą prędkością. Jeżeli w dalszym ciągu pominiemy obecność innych ciał niebieskich, to działając siłą równoważącą ciężar unoszonego ciała, można je podnieść dowolnie wysoko, ale po zaniknięciu siły ciało spadnie z powrotem na powierzchnię Ziemi. Jeżeli uwzględnimy istnienie innych ciał, na przykład Księżyca, to możliwe jest dowolnie powolne przemieszczanie się w jego kierunku aż do momentu, gdy siła grawitacyjnego przyciągania Księżyca stanie się większa od tej siły powodowanej oddziaływaniem Ziemi. Czynności te jednak wymagają stałego działania siły w trakcie podnoszenia.

Trzecia prędkość kosmicznaEdytuj

Trzecia prędkość kosmiczna to prędkość początkowa potrzebna do opuszczenia Układu Słonecznego

 

Prędkość ta przy powierzchni Ziemi wynosi około 42 km/s, lecz wobec jej ruchu obiegowego wokół Słońca wystarczy przy starcie z jej powierzchni w kierunku zgodnym z tym ruchem nadać obiektowi dodatkową prędkość 16,7 km/s względem poruszającej się Ziemi, by opuścił on Układ Słoneczny.

Czwarta prędkość kosmicznaEdytuj

Czwarta prędkość kosmiczna to prędkość początkowa potrzebna do opuszczenia Drogi Mlecznej

 

Prędkość ta wynosi ok. 550 km/s[1], lecz wykorzystując fakt ruchu Słońca dookoła środka Galaktyki, wystarczy obiektowi nadać prędkość około 330 km/s w kierunku zgodnym z kierunkiem ruchu obiegowego Słońca względem centrum Galaktyki, by mógł on ją opuścić.

Zobacz teżEdytuj

PrzypisyEdytuj

  1. International Centre for Radio Astronomy Research (ICRAR): Dark matter half what we thought, say scientists. AlphaGalileo, 2014-10-09. [dostęp 2014-10-16].

BibliografiaEdytuj