Przestrzeń Lorentza

Przestrzenie Lorentza – klasa (quasi-)przestrzeni Banacha uogólniająca przestrzenie Lp. Konstrukcja przestrzeni pochodzi od G. Lorentza[1][2].

Konstrukcja edytuj

Niech (X,μ) będzie przestrzenią z miarą oraz niech 0 < p < ∞, 0 < q ≤ ∞. Przestrzenią Lorentza Lp,q nazywa się przestrzeń wszystkich zespolonych funkcji mierzalnych na X dla których wartość

 

jest skończona (jest to wówczas quasinorma zupełna w tej przestrzeni).

W przypadku q < ∞, zachodzi następujący wzór

 

natomiast gdy q = ∞ prawdziwy jest wzór

 

Umownie, definiuje się L∞,∞(X,μ) = L(X,μ). W przypadku, gdy p=q przestrzenie Lorentza są przestrzeniami Lp, tj. Lp,p = Lp.

Normowanie edytuj

Wyżej skonstruowane quasi-przestrzenie Banacha można unormować dla p ∈ (1, ∞), q ∈ [1, ∞]. Niech f będzie zespoloną funkcją mierzalną na X oraz niech funkcja

 

będzie zdefiniowana wzorem

 

gdzie dƒ jest tzw. dystrybuantą funkcji ƒ, daną wzorem

 

(powyżej umownie przyjęto, że infimum zbioru pustego wynosi ∞.

Dla p ∈ (1, ∞), q ∈ [1, ∞] funkcja

 

jest normą w przestrzeni Lorentza Lp,q.

Przypisy edytuj

  1. G. Lorentz, Some new function spaces, Annals of Mathematics 51 (1950), 37-55.
  2. G. Lorentz, On the theory of spaces Λ, Pacific Journal of Mathematics 1 (1951), pp. 411-429.