Carl Friedrich Gauss

niemiecki matematyk, fizyk, astronom i geodeta

Carl Friedrich Gauß (Gauss) właśc. Johann Friedrich Carl Gauss[1][a] (ur. 30 kwietnia 1777 w Brunszwiku, zm. 23 lutego 1855 w Getyndze) – niemiecki naukowiec: matematyk, fizyk, astronom, geodeta i wynalazca; wieloletni profesor Uniwersytetu w Getyndze i dyrektor tamtejszego obserwatorium astronomicznego. Członek towarzystw naukowych, także zagranicznych, oraz laureat nagród, w tym Medalu Copleya – prawdopodobnie najwyższego wyróżnienia badawczego jego czasów[potrzebny przypis] (1838, razem z Michaelem Faradayem).

Carl Friedrich Gauss
Johann Friedrich Carl Gauss
Ilustracja
Portret Carla Friedricha Gaussa pędzla Gottlieba Biermanna (1887)
Data i miejsce urodzenia

30 kwietnia 1777
Brunszwik

Data i miejsce śmierci

23 lutego 1855
Getynga

Zawód, zajęcie

naukowiec: matematyk, fizyk, astronom, geodeta, wynalazca

Narodowość

niemiecka

Alma Mater

Uniwersytet w Getyndze

Faksymile
Odznaczenia
Order „Pour le Mérite” za Naukę i Sztukę Kawaler Orderu Narodowego Legii Honorowej (Francja)

W matematyce zajmował się praktycznie wszystkimi dyscyplinami swojej epoki i współtworzył nowe – zarówno teoretyczne (czyste), jak i stosowane. Przysłużył się dla teorii liczb, geometrii, algebry, analizy, probabilistyki, metod numerycznych, statystyki i fizyki matematycznej; jest uważany za jednego z pionierów geometrii nieeuklidesowej obok Jánosa Bolyaia i Nikołaja Łobaczewskiego. Zajmował się też problemami konstrukcji klasycznych, był współtwórcą geometrii różniczkowej (dowodząc Theorema Egregium), arytmetyki modularnej i pierwszego pełnego dowodu zasadniczego twierdzenia algebry, dokończonego przez Jeana-Roberta Arganda. Jest też kojarzony z rozkładem normalnym, zwanym rozkładem Gaussa, choć nie opisał go jako pierwszy. Opracował również szybką transformację Fouriera (ang. FFT) – ponad 150 lat przed pojawieniem się tej techniki w społeczności matematyków (w latach 60. XX w.)[2] – oraz kwaterniony ponad dwie dekady przed W.R. Hamiltonem[3].

Jako fizyk był i teoretykiem, i eksperymentatorem. Zajmował się elektrycznością i magnetyzmem, rozszerzył odpowiedni układ jednostek miar, skonstruował jeden z pierwszych telegrafów, magnetometr i zastosował go do badań geomagnetyzmu. Prawo Gaussa pozwoliło na opis pola elektrycznego w sposób równoważny prawu Coulomba, lecz często bardziej efektywny obliczeniowo. Stało się ono jednym z czterech równań Maxwella zasadniczych dla elektrodynamiki klasycznej i znalazło zastosowanie także do opisu grawitacji. Fizyka upamiętnia niemieckiego uczonego przez nazwy jednostki gaus (Gs) należącej do układu CGS, jednej z odmian tego układu[4] oraz działa Gaussa.

Jako astronom teoretyczny rozwinął mechanikę nieba – przewidując orbity planetoid jak Ceres[b] i Pallas – oraz obliczenia kalendarzowe, podając nowy algorytm wyznaczania daty Wielkanocy. Geodezja zawdzięcza mu wynalezienie heliotropu i jednego z odwzorowań kartograficznych (Gaussa-Krügera). Wszystkie trzy nauki – fizyka, astronomia i geodezja – korzystają z opracowanej przez niego analizy niepewności pomiarowych. W tej dziedzinie należy do twórców metody najmniejszych kwadratów rozwiązywania problemu regresji liniowej, obecnego w rozmaitych naukach empirycznych.

Gauss bywa nazywany jednym z największych matematyków wszech czasów[5] – obok Archimedesa i Newtona – a przez sobie współczesnych był określany „księciem matematyków” (łac. Princeps Mathematicorum)[potrzebny przypis]. Oprócz terminów specjalistycznych upamiętniają go nazwy szeregu miejsc i instytucji, pomnik w rodzinnym Brunszwiku, a także wizerunki na znaczkach pocztowych i banknotach.

Życiorys edytuj

Pochodzenie edytuj

 
Dom rodzinny Gaussa w Brunszwiku, zniszczony w czasie II wojny światowej – zdjęcie z 1914 roku

Carl Friedrich Gauss urodził się 30 kwietnia 1777 roku w Brunszwiku[6] w ubogiej rodzinie[7]. Jego ojciec Gebhard Gauß (1744–1808) był rzemieślnikiem[8]; pracował jako rzeźnik, ogrodnik, murarz[9] a później jako kasjer[6]. Rodzina ojca zajmowała się początkowo rolnictwem, a ok. 1740 roku przeniosła się do Brunszwiku[10]. Gebhard Gauß nie posiadał wykształcenia, ale potrafił czytać, pisać i znał podstawy arytmetyki[10].

Matką Gaussa była Dorothea Benze (1743–1839), córka kamieniarza[9]. Była drugą żoną Gebharda i zajmowała się domem[6]. Nie miała wykształcenia, ale prawdopodobnie potrafiła czytać[10]. Carl Friedrich był z nią blisko związany i opiekował się nią aż do jej śmierci w wieku 96 lat[10].

Gauss miał starszego przyrodniego brata – Georga, syna Gebharda z pierwszego małżeństwa[8][c].

Dzieciństwo i szkoła podstawowa edytuj

Gauss już jako małe dziecko wykazywał nieprzeciętne zdolności matematyczne – w wieku 3 lat umiał dodawać i wytknął ojcu błąd podczas naliczania dniówki dla pomocników przy pracy ogrodniczej[11][8][d]. Jak sam żartobliwie twierdził, nauczył się rachować, zanim jeszcze zaczął mówić[11][12]. Sam nauczył się czytać, pytając domowników o wymowę poszczególnych liter[8][13].

W 1784 roku Gauss został posłany do lokalnej szkoły (niem. Katharinen-Schule) prowadzonej przez J.G. Büttnera[11][12]. Po dwóch latach rozpoczął naukę arytmetyki i objawił swój nieprzeciętny talent, rozwiązując z miejsca zadanie, jakie nauczyciel podał w klasie[12][14]. Zadanie polegało na dodaniu do siebie liczb od 1 do 100[12][e]. Gauss jako pierwszy oddał tabliczkę, na której nie było żadnych obliczeń a jedynie prawidłowe rozwiązanie końcowe, a następnie wytłumaczył nauczycielowi, w jaki sposób doszedł do wyniku[15]. Büttner zaczął organizować podręczniki do matematyki dla zdolnego ucznia[16]. Młodemu Gaussowi wiele uwagi poświęcał starszy o osiem lat asystent Büttnera Martin Bartels (1769–1836), który sam interesował się matematyką i później został profesorem matematyki na uniwersytecie w Kazaniu, a następnie na uniwersytecie w Dorpacie[16]. Gaussa i Bartelsa połączyła wieloletnia przyjaźń[16][17]. W wieku 11 lat Gauss samodzielnie zaznajomił się z dwumianem Newtona oraz z teorią ciągów nieskończonych[17]. Büttner i Bartels przekonali Gebharda Gaußa, by zwolnił syna z wieczornej pracy przędzenia lnu i pozwolił mu na dalszą naukę[16]. Büttner z Bartelsem zatroszczyli się o fundatorów[18] i promocję utalentowanego chłopca w kręgach naukowych[17].

Mecenat księcia Brunszwiku edytuj

 
Fragment z dziennika 19-letniego Gaussa, zawierający napis „Eureka” w alfabecie greckim (1796)
 
Portret Gaussa, litografia Siegfrieda Detleva Bendixena (1828)
 
Pomnik Gaussa w Brunszwiku (zdjęcie z 2014)

W 1788 roku przy wsparciu Büttnera Gauss został przyjęty do szkoły średniej w Brunszwiku – Gymnasium Catharineum – od razu do klasy drugiej[16]. Szkoła kładła nacisk na naukę greki i łaciny, które Gauss szybko opanował[18]. Posługujący się dotychczas dialektem, Gauss nauczył się wówczas również standardowego języka niemieckiego (niem. Hochdeutsch)[10]. W 1788 roku Bartels został przyjęty do Collegium Carolinum w Brunszwiku, gdzie matematyki nauczał Eberhard August Wilhelm von Zimmermann (1743–1815) i którego prawdopodobnie Bartels poinformował o talencie Gaussa[18]. Zimmermann dostarczał Gaussowi kolejnych podręczników i zaaranżował w 1791 roku spotkanie z księciem Brunszwiku Karolem Wilhelmem (1735–1806)[18]. Książę zapewnił Gaussowi stypendium naukowe w wysokości 10 talarów rocznie[10], co umożliwiło podjęcie studiów w Collegium Carolinum (1792–1795) i ich kontynuację na uniwersytecie w Getyndze (1795–1798)[6]. Podczas pobytu w Collegium Carolinum, korzystając z dobrze zaopatrzonej biblioteki, Gauss samodzielnie zapoznał się z dziełami Eulera, Lagrange’a i Newtona[8]. Opracował wówczas metodę najmniejszych kwadratów[19][f]. W okresie tym Gauss zajmował się teorią liczb, w tym liczbami pierwszymi[20].

W Getyndze studiował szereg przedmiotów:

Początkowo wahał się, czy studiować języki starożytne, czy matematykę – w końcu zdecydował się na drugą opcję[6]. 30 marca 1796 roku znalazł konstrukcję siedemnastokąta foremnego przy użyciu cyrkla i linijki[6][g]. Odkrycie opierało się na dogłębnej analizie rozkładu na czynniki równań wielomianowych, co umożliwiło późniejsze tezy teorii Galois[1]. W marcu 1796 roku Gauss zaczął pisać dziennik naukowy (niem. Notizen-Journal), który prowadził do 1814 roku[20]. Dziennik został upubliczniony dopiero w 1898 roku – zawierał 146 krótkich wpisów z odkryciami Gaussa[21].

Podczas studiów w Getyndze Gauss zaprzyjaźnił się z węgierskim matematykiem Wolfgangiem Bolyai (1775–1856), ojcem Jánosa – odkrywcy geometrii nieeuklidesowej[22].

W 1798 roku wrócił do Brunszwiku[6]. W tym czasie ukończył doktorat in absentia u Johanna Friedricha Pfaffa (1765–1825) na uniwersytecie w Helmstedt[6][h]. W 1799 roku w swojej pracy doktorskiej[i] podał pierwszy poprawny dowód podstawowego twierdzenia algebry[24], mówiącego, że każde równanie wielomianowe o współczynnikach rzeczywistych lub zespolonych ma tyle pierwiastków (rozwiązań), ile wynosi jego stopień (największa potęga zmiennej)[1][j]. Dowód Gaussa był tak przekonujący, że został on zwolniony z egzaminów ustnych i publicznej obrony rozprawy[23].

W roku 1800 opublikował w Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde artykuł przedstawiający opracowaną przez siebie metodę obliczania daty Wielkanocy (niem. Gauß’sche Osterformel)[25].

Po ukończeniu studiów, dzięki wsparciu księcia Brunszwiku, mógł całkowicie poświęcić się nauce – w 1801 roku otrzymywał rocznie 400 talarów, a od 1803 roku – 600 oraz bezpłatne zakwaterowanie[8].

Profesura w Getyndze edytuj

 
Gmach obserwatorium astronomicznego w Getyndze, gdzie Gauss mieszkał i pracował w latach 1816–1855

W 1802 roku otrzymał ofertę pracy w Petersburgu, którą jednak odrzucił[6]. Po śmierci księcia Karola Wilhelma w 1806 roku przyjął ofertę z Getyngi[6], gdzie w 1807 roku został profesorem astronomii i dyrektorem obserwatorium astronomicznego na uniwersytecie w Getyndze – funkcje te piastował do końca życia[7]. Inne oferty, m.in. z Dorpatu, Lipska i Berlina konsekwentnie odrzucał[6]. Od 1808 roku mieszkał i pracował w bezpośrednim sąsiedztwie obserwatorium[26] – od 1816 roku aż do śmierci w zachodnim skrzydle nowego gmachu obserwatorium[27].

W Getyndze zajmował się przede wszystkim astronomią, geodezją i fizyką[6]. W 1816 roku[k] otrzymał zlecenie zbadania Królestwa Hanoweru; prace trwały 25 lat[6]. W tym samym roku otrzymał tytuł Królewskiego Radcy Dworu (niem. Königlicher Hofrat)[20]. W 1828 roku wziął udział w spotkaniu niemieckich przyrodników i lekarzy w Berlinie, gdzie spotkał fizyka Wilhelma Webera (1804–1891), którego ściągnął do Getyngi[6]. Razem z Weberem zbudował m.in. telegraf elektromagnetyczny[6]. W latach 1833–1834, 1841–1842 i 1845–1846 pełnił funkcję dziekana wydziału filozofii na uniwersytecie w Getyndze[20]. W 1839 roku został sekretarzem Królewskiego Towarzystwa Naukowego w Getyndze[20]. W 1845 roku otrzymał tytuł tajnego radcy (niem. Geheimer Hofrath)[20].

Śmierć i jej następstwa edytuj

 
Gauss na łożu śmierci w 1855 roku
 
Grób Gaussa (zdjęcie z 2006)

Gauss zmarł we śnie 23 lutego 1855 roku w Getyndze[7]. Został pochowany na lokalnym cmentarzu Albanifriedhof[20]. Na cześć Gaussa, król Hanoweru Jerzy V (1819–1878) nakazał wybicie pamiątkowej monety, na której Gauss jest uhonorowany jako „Mathematicorum Princeps”[20].

Krótko po śmierci pobrano mózg Gaussa, za zgodą i z zastrzeżeniem możliwości wykorzystania wyłącznie do badań naukowych. Zrobiła to grupa ekspertów pod kierownictwem niemieckiego anatoma Rudolfa Wagnera (1805–1864), przyjaciela Gaussa i fizjologa na uniwersytecie w Getyndze[28]. Odtąd przechowywany jest w zbiorach anatomicznych uniwersytetu, od 1995 roku w Instytucie Etyki i Historii Medycyny[28]. W 2013 roku odkryto, że jeszcze w XIX w. doszło do pomyłki – mózg przechowywany jako Gaussa okazał się mózgiem niemieckiego patologa Conrada Heinricha Fuchsa (1803–1855), a mózg przechowywany jako Fuchsa okazał się mózgiem Gaussa[28].

Życie prywatne edytuj

Gauss był dwukrotnie żonaty i miał łącznie sześcioro dzieci:

  • w 1805 roku ożenił się z Johanną Osthoff (1780–1809), córką garbarza z Brunszwiku. Miał z nią troje potomstwa: syna Josepha (1806–1873)[l], córkę Minnę (1808–1840)[m] i syna Louisa[n] (1809–1810), który zmarł jako dziecko[6][20].
  • Po śmierci pierwszej żony w 1809 roku Gauss ożenił się ponownie – z Minną Waldeck (1788–1831), córką profesora prawa z Getyngi Johanna Petera Waldecka (1751–1815). Urodziła mu dalszą trójkę dzieci: dwóch synów – Eugena (1811–1896) i Wilhelma (1813–1879)[o] oraz córkę Therese (1816–1864)[6].

Najbliższa rodzina nie miała zrozumienia dla pracy Gaussa, którą postrzegano jako stratę czasu, a samego matematyka jako człowieka niespełna rozumu[6].

Dorobek naukowy edytuj

Gauss zajmował się różnymi działami matematyki i jej zastosowaniami w innych dziedzinach[7]. Był uznanym autorytetem w całej Europie, a jemu współcześni nazywali go „księciem matematyków” (łac. princeps mathematicorum)[7]. Bywał nazywany jednym z trzech największych matematyków w historii, obok Archimedesa (III w. p.n.e.) i Newtona (XVII–XVIII w.)[29][30].

Gauss nie stworzył własnej szkoły matematycznej i nie nauczał masowo[6]. Skupił wokół siebie wybranych studentów, z którymi utrzymywał osobisty kontakt[6]. Jego wykładów słuchali m.in.:

Gauss niechętnie publikował – wiele jego przemyśleń zachowało się w formie listów, notatek i zapisków[6]. Niektóre z jego odkryć poznano dopiero później, kiedy inni naukowcy, pracując niezależnie, opublikowali wyniki swoich prac[6]. Pierwsze publikacje Gauss wydał z poczucia obowiązku wobec swojego patrona księcia Karola Wilhelma[6].

Matematyka edytuj

 
Gwiazda 17-ramienna na pomniku Gaussa w Brunszwiku
 
Funkcja Gaussa związana z teorią liczb

Pierwszym ważnym odkryciem matematycznym Gaussa było podanie konstrukcji siedemnastokąta foremnego przy użyciu cyrkla i linijki (1796)[7][5].

Jako pierwszy przedstawił poprawny dowód podstawowego twierdzenia algebry (praca doktorska z 1799 roku)[5], podając później jeszcze trzy inne dowody tego twierdzenia[6] (w 1815, 1816 i 1849 roku[20]). W swojej pracy doktorskiej skrytykował najpierw wcześniejsze dowody, m.in. ten przedstawiony przez francuskiego matematyka Jean’a d’Alemberta (1717–1783), po czym przedstawił własny, oparty na założeniach o krzywych algebraicznych[31]. Założenia te były wiarygodne, jednak nie zostały ściśle udowodnione przez Gaussa[32][p]. W czwartym dowodzie z 1849 roku Gauss użył liczb zespolonych, które wcześniej przedstawił w liście do Friedricha Wilhelma Bessela (1784–1846) i wprowadził w publikacji z 1832 roku Theoria Residuorum biquadraticorum. Commentatio secunda[6]. Jednak nie rozważył równań zbudowanych z liczb zespolonych, co uczynił w 1806 roku szwajcarski matematyk Jean-Robert Argand (1768–1822), przedstawiając pierwszy ścisły dowód zasadniczego twierdzenia algebry[32].

W 1801 roku Gauss opublikował dzieło Disquisitiones arithmeticae, w którym podsumował stan wiedzy z zakresu teorii liczb, przedstawił teorię form kwadratowych i przeprowadził pierwszy dowód prawa wzajemności reszt kwadratowych[7]. Dzieło zadedykował swojemu patronowi księciu Brunszwiku Karolowi Wilhelmowi[33].

W 1818 roku doszedł do pojęcia geometrii nieeuklidesowej, lecz z obawy przed ośmieszeniem nie opublikował swych wyników i zaprzestał dalszej pracy[7][q]. Uważany jest za pioniera geometrii nieeuklidesowej[34].

W pracy z 1827 roku Disquisitiones generales circa superficies curvas udowodnił m.in., że krzywizna całkowita powierzchni zamkniętych nie zmienia się przy zginaniu (Theorema Egregium – twierdzenie wyborne)[7]. W 1849 roku opisał szybką metodę rozwiązywania układów równań liniowych, tzw. metodę Gaussa[7].

W swojej pracy zajmował się również m.in. liczbami zespolonymi (płaszczyzna Gaussa), równaniami różniczkowymi, teorią szeregów[7]. W 1851 roku sporządził ekspertyzę dotyczącą funduszu dla wdów na uniwersytecie w Getyndze, tworząc w ten sposób podstawy matematyki aktuarialnej[20].

Fizyka edytuj

 
Rekonstrukcja telegrafu Gaussa i Webera na dziedzińcu Paulinerkirche w Getyndze

Zajmował się także fizyką, przede wszystkim fizyką teoretyczną, lecz prowadził również badania magnetyzmu i projektował przyrządy optyczne[31].

W 1829 podał zasadę najmniejszego przymusu[7][20]. W 1830 roku prowadził badania nad włoskowatością[7]. W latach 1834–1840 prowadził prace nad teorią potencjału[7].

Wynalazł magnetometr – przyrząd do pomiaru wielkości, kierunku oraz zmian pola magnetycznego lub właściwości magnetycznych materii, co pozwoliło na rozszerzenie badań nad ziemskim magnetyzmem[7]. Wspólnie z niemieckim fizykiem Wilhelmem Weberem (1804–1891) zbudowali telegraf elektromagnetyczny (1833)[6], którego nie opatentowali[7]. Razem z Weberem wprowadził absolutny układ jednostek elektromagnetycznych[7]. W 1836 roku założył wraz z Weberem sieć obserwatoriów magnetyzmu Internationale Arbeitsgemeinschaft zur Erforschung des Erdmagnetismus[20].

W 1840 roku stworzył podstawy teorii konstrukcji obrazu optycznego przy przejściu promieni świetlnych przez układ soczewek[7].

Astronomia edytuj

 
Ceres

Gauss osiągnął również ważne wyniki w dziedzinie astronomii – wynalazł nowe metody obliczania orbit ciał niebieskich[7].

1 stycznia 1801 roku astronom włoski Giuseppe Piazzi (1746–1826) odkrył pierwszą planetoidę, Ceres, która po 6 tygodniach obserwacji zbliżyła się do Słońca, zniknęła w jego blasku i nie mogła być zlokalizowana[35]. Na podstawie zgromadzonych danych Gauss, układając i rozwiązując równanie ósmego stopnia, obliczył orbitę Ceres, co umożliwiło ponowne zlokalizowanie planetoidy. Ceres została zaobserwowana rok później niezależnie przez Franza Xavera von Zacha (1754–1832) w grudniu 1801 roku i w styczniu 1802 roku przez Heinricha Wilhelma Olbersa (1758–1840) blisko miejsca przewidzianego obliczeniami Gaussa[35][20].

Następnie wyliczył orbitę planetoidy Pallas[7]. Badał też wiekowe perturbacje planet. Rezultaty swoich badań astronomicznych zebrał w książce Theoria Motus Corporum Coelestium in Sectionibus Conicus Solem Ambietium (Teoria ciał niebieskich obiegających Słońce po orbitach stożkowych, 1809)[7]. Zaprezentował w niej między innymi wymyśloną przez siebie, jeszcze w okresie nauki w Brunszwiku, metodę najmniejszych kwadratów.

Geodezja edytuj

 
Banknot 10-markowy z portretem Gaussa i jego krzywą na tle budynków Getyngi (1990)
 
Heliotrop Gaussa na rewersie banknotu 10-markowego z 1990

W 1818 roku Gauss zajął się tematyką związaną z geodezją, a dokładniej z matematycznym problemem związanym z określeniem kształtu i rozmiarów Ziemi[20]. Aby zwiększyć dokładność danych, Gauss skonstruował przyrząd, tzw. heliotrop (1821[20]), w którym wykorzystuje się promienie Słońca do pomiaru krzywizny[36].

Opracował teorię błędów pomiarowych, opartą na metodzie najmniejszych kwadratów i zastosował ją m.in. do przeprowadzenia triangulacji dużych obszarów Królestwa Pruskiego[7]. W latach 1802–1807 prowadził pomiary triangulacyjne w Brunszwiku i okolicach[20]. Jego badania związane z teorią błędów pomiarowych doprowadziły w 1823 roku do odkrycia rozkładu normalnego zmiennej losowej (nazywany także rozkładem Gaussa), jednego z najważniejszych rozkładów prawdopodobieństwa[7].

Gauss opracował także odwzorowania kartograficzne, np. odwzorowanie Gaussa elipsoidy na kulę[37] czy odwzorowanie elipsoidy obrotowej na płaszczyznę (zwane potocznie odwzorowaniem Gaussa-Kruegera)[38], które jest podstawą dwóch obecnie obowiązujących w Polsce odwzorowań – układu 2000 (dla map wielkoskalowych)[39] i 1992 (dla map średnio- i małoskalowych)[40].

Kamienie oznaczające punkty pomiarowe (niem. Gaußstein), używane przez Gaussa w latach 20. XIX w. do pomiaru ziemi, zachowały się do XXI wieku[41][42][43][44][45].

Członkostwa edytuj

Nagrody edytuj

Publikacje edytuj

 
Strona tytułowa Disquisitiones Arithmeticae – rozprawy o teorii liczb z 1801 roku

Gauss tworzył swoje rozprawy w dwóch językach. Te początkowe – poświęcone matematyce i astronomii – pisał po łacinie, a te późniejsze – zawiązane z fizyką i geodezją – ukazały się po niemiecku:

Matematyka
  • 1799: Demonstratio nova theorematis omnem funkctionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus revolvi posse[33]
  • 1801: Disquisitiones Arithmeticae (pol. „Badania arytmetyczne”) – pierwszy systematyczny podręcznik algebraicznej teorii liczb[7]
  • 1827: Disquisitiones generales circa superficies curvas[7][20]
  • 1828: Theoria Residuorum biquadraticorum. Commentatio prima[47]
  • 1832: Theoria Residuorum biquadraticorum. Commentatio secunda[47]
Fizyka
  • 1837–1843: Resultate aus den Beobachtungen des magnetischen Vereins, razem z W. Weberem[20]
  • 1839: Allgemeine Theorie des Erdmagnetismus[20]
Astronomia
  • 1809: Theoria motus corporum in sectionibus conicis solem ambientium[7][20]
  • 1823: Theoria combinationis observationum erroribus minimis obnoxiae[7]
Geodezja
  • 1844: Untersuchungen über Gegenstände der Höheren Geodäsie (1. Abhandlung)[20]
    • 1847: II wydanie (niem. 2. Abhandlung)[20]

Upamiętnienie edytuj

Nazewnictwo edytuj

Terminy naukowe
 
Trzystopniowe działo Gaussa

Algebra i teoria liczb:

Geometria:

Analiza matematyczna:

Probabilistyka:

Pojęcia niematematyczne:

Inne nazwy
 
Gauss – statek badawczy niemieckiej ekspedycji antarktycznej
 
Gauss – krater księżycowy

Wyróżnienia dla naukowców:

Badawcze statki wodne:

  • Gauss” z 1901 roku, należący do niemieckiej ekspedycji antarktycznej;
  • Gauss” z 1941 roku;
  • Gauss” z 1980 roku, należący do Federalnej Agencji Morskiej i Hydrograficznej Niemiec [52].

Miejsca na Antarktydzie:

Inne upamiętnienia nazewnicze Gaussa to:

Inne formy edytuj

 
Znaczek z portretem Gaussa wydany przez niemiecką pocztę (1955)
 
Niemiecki znaczek pocztowy z okazji 200. urodzin Gaussa (1977). Przedstawia on płaszczyznę zespoloną, czasem zwaną płaszczyzną Gaussa
  • W 1880 roku miasto Brunszwik wystawiło Gaussowi pomnik z okazji 100. rocznicy urodzin matematyka, przedstawiający uczonego w starszym wieku, w płaszczu obszytym futrem i charakterystycznej aksamitnej czapce[61].
  • W 1899 roku miasto Getynga wystawiło pomnik Gaussowi i Weberowi, upamiętniający wynalezienie telegrafu[62].
  • W 1929 roku w rodzinnym domu Gaussa w Brunszwiku powstało Gauß-Museum, które zostało doszczętnie zniszczone podczas II wojny światowej[63].
  • W 1955 roku, z okazji 100. rocznicy śmierci Gaussa, Deutsche Bundespost wydała znaczek o nominale 10 fenigów z portretem Gaussa[64].
  • W 1977 roku, dla uczczenia 200. rocznicy urodzin uczonego, ukazał się kolejny znaczek, tym razem o nominale 40 fenigów[65].
  • W 1990 roku podobizna Gaussa znalazła się na 10-markowym banknocie[66]. Została sporządzona według kopii obrazu Christiana Albrechta Jensena z 1840 roku, wykonanej w 1887 roku przez Gottlieba Biermanna (1824–1908)[67]. Gaussa przedstawiono obok motywu historycznej Getyngi, na który nałożona była krzywa rozkładu normalnego, symbolizująca jego pracę w dziedzinie matematyki[68]. Na rewersie przedstawiono heliotrop konstrukcji Gaussa na tle stylizowanych elementów przypominających orbity planet i pola magnetyczne; w białym polu widnieje siatka pomiarowa Gaussa[68].
  • W 2005 roku ukazała się powieść o życiu Gaussa i przyrodnika Alexandra von Humboldta (1769–1859) – Rachuba świata (niem. Die Vermessung der Welt) autorstwa Daniela Kehlmanna[69].
  • W 2012 roku na podstawie tej powieści Detlev Buck zrealizował film o tym samym tytule. W roli Gaussa wystąpił Florian David Fitz[69].
  • W 2018 roku – z okazji 241. urodzin Gaussa – wyszukiwarka Google uhonorowała naukowca okolicznościowym Google Doodle[70].

Zobacz też edytuj

Uwagi edytuj

  1. Sam Gauss nie używał imienia Johann, ostatni raz jako Johann Friedrich Carl wpisał się do rejestru studentów Collegium Carolinum w Brunszwiku w 1792 roku, zob. Dunnington 2004 ↓, s. 18.
  2. Obiekt ten zaliczono potem do grupy planet karłowatych.
  3. Pierwsza żona Gebharda zmarła w 1775 roku, a rok później Gebhard ożenił się z Dorotheą, zob. Wußing 1989 ↓, s. 8–9.
  4. Neue Deutsche Biographie podaje, że sytuacja ta zdarzyła się kiedy Gauss miał 6 lat, zob. Neue Deutsche Biographie 1964 ↓.
  5. W innej wersji od 1 do 60, zob. Neue Deutsche Biographie 1964 ↓ i Wußing 1989 ↓, s. 10.
  6. Metodę tę opracowali również niezależnie szwajcarski matematyk Daniel Huber (1768–1829) i francuski matematyk Adrien-Marie Legendre (1752–1833), który opublikował ją w 1805 roku; metoda Gaussa została opublikowana w 1809 roku, zob. Dunnington 2004 ↓, s. 19.
  7. Zgodnie z wolą Gaussa na jego nagrobku umieszczono 17-kąt foremny, zob. Encyklopedia PWN ↓.
  8. Napisanie doktoratu w Helmstedt, a nie w Getyndze, przypisywane jest dwóm czynnikom – czołowy matematyk w Getyndze Abraham Gotthelf Kästner (1719–1800) był zaawansowany wiekiem i nie był w stanie docenić nowych przemyśleń Gaussa; promotor Gaussa książę Brunszwiku życzył sobie, by jego podopieczny ukończył studia w księstwie Brunszwiku-Wolfenbüttel, a nie w księstwie Brunszwiku-Lüneburga, które od 1714 roku pozostawało w unii personalnej z Królestwem Wielkiej Brytanii[23].
  9. Encyclopædia Britannica podaje rok 1797, zob. Encyclopædia Britannica 2020 ↓.
  10. Później podał jeszcze trzy inne dowody tego twierdzenia, zob. Encyclopædia Britannica 2020 ↓.
  11. Voigt podaje, że zlecenie zbadania Królestwa Hanoweru Gauss otrzymał w 1820 roku, zob. Voigt 2005 ↓.
  12. Syn otrzymał imię Józef na cześć włoskiego astronoma Giuseppe Piazziego, odkrywcy pierwszej planetoidy Ceres, zob. Voigt 2005 ↓.
  13. Córka otrzymała imię Wilhelmina (Mina) na cześć niemieckiego astronoma Heinricha Wilhelma Olbersa, odkrywcy drugiej planetoidy Pallas, zob. Voigt 2005 ↓.
  14. Syn otrzymał imię Louis na cześć niemieckiego astronoma Karla Ludwiga Hardinga (1765–1834), odkrywcy trzeciej planetoidy Juno, zob. Voigt 2005 ↓.
  15. Syn otrzymał imię Wilhelm na cześć niemieckiego astronoma Heinricha Wilhelma Olbersa, odkrywcy czwartej planetoidy Westy, zob. Voigt 2005 ↓.
  16. Założenia te udowodnił dopiero w latach 20. XX w. ukraiński matematyk Aleksander Ostrowski (1893–1986), zob. The Maths Book 2019 ↓, s. 209.
  17. Za odkrywców geometrii nieeuklidesowej uważani są węgierski matematyk János Bolyai (1802–1860) i rosyjski matematyk Nikołaj Łobaczewski (1792–1856), zob. Encyklopedia PWN ↓.
  18. Wygasły wulkan odkryty w lutym 1902 roku przez Niemiecką Ekspedycję Antarktyczną (GerAE) pod kierownictwem Drygalskiego[53], który nazwał go na cześć statku ekspedycyjnego „Gauss” nazwanego z kolei na cześć Gaussa, zob. Landis 2001 ↓, s. 266.

Przypisy edytuj

  1. a b c d Encyclopædia Britannica 2020 ↓.
  2. Heideman, M.; Johnson, D.; Burrus, C.: Gauss and the history of the fast fourier transform, IEEE ASSP Magazine, 1984, vol. 1, 4, pp. 14–21, doi 10.1109/MASSP.1984.1162257.
  3.   Pujol, J., "Hamilton, Rodrigues, Gauss, Quaternions, and Rotations: A Historical Reassessment" Communications in Mathematical Analysis (2012), 13(2), 1–14
  4. Gaussa układ, [w:] Encyklopedia PWN [dostęp 2022-02-06].
  5. a b c Jahnke 2003 ↓, s. 205.
  6. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Neue Deutsche Biographie 1964 ↓.
  7. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Encyklopedia PWN ↓.
  8. a b c d e f Allgemeine Deutsche Biographie 1878 ↓.
  9. a b Wußing 1989 ↓, s. 8.
  10. a b c d e f Bühler 2012 ↓.
  11. a b c Wußing 1989 ↓, s. 9.
  12. a b c d Dunnington 2004 ↓, s. 12.
  13. Dunnington 2004 ↓, s. 11.
  14. Wußing 1989 ↓, s. 10.
  15. Dunnington 2004 ↓, s. 13.
  16. a b c d e Wußing 1989 ↓, s. 11.
  17. a b c Dunnington 2004 ↓, s. 14.
  18. a b c d Wußing 1989 ↓, s. 12.
  19. Dunnington 2004 ↓, s. 19.
  20. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Voigt 2005 ↓.
  21. Bell 2000 ↓, s. 304.
  22. Bell 2000 ↓, s. 306.
  23. a b Niedersächsische Staats- und Universitätsbibliothek Göttingen: 1795–1806 Göttingen, Helmstedt und Braunschweig: Studium, Promotion und der erste Ruhm. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2020-12-27]. (niem.).
  24. Encyklopedia PWN – algebry twierdzenie podstawowe ↓.
  25. Dunnington 2004 ↓, s. 69.
  26. Gauß' Wohnhaus 1808-1816. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2021-09-03]. (niem.).
  27. 1807-1825 Frühe Professorenjahre in Göttingen und die Vermessung des Königreichs Hannover. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2021-09-03]. (niem.).
  28. a b c Schweizer, Wittmann i Frahm 2014 ↓.
  29. Bell 2000 ↓, s. 295.
  30. Gauß, der geniale Mathematiker. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2020-12-27]. (niem.).
  31. a b The Maths Book 2019 ↓, s. 208.
  32. a b The Maths Book 2019 ↓, s. 209.
  33. a b Bell 2000 ↓, s. 307.
  34. The Maths Book 2019 ↓, s. 212.
  35. a b Lang 2011 ↓, s. 17.
  36. Niedersächsische Staats- und Universitätsbibliothek Göttingen: Heliotrop zweiter Bauart. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2020-12-26]. (niem.).
  37. Wieczorek i Zalewski 2005 ↓, s. 202.
  38. Encyklopedia PWN – Gaussa–Krügera odwzorowanie ↓.
  39. Dz.U. z 2024 r. poz. 342
  40. Dz.U. z 2000 r. nr 70, poz. 821
  41. Niedersächsisches Landesamt für Denkmalpflege: Gaußstein Wilseder Berg. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  42. Niedersächsisches Landesamt für Denkmalpflege: Gaußstein Breithorn. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  43. Niedersächsisches Landesamt für Denkmalpflege: Gaußstein Timpenberg. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  44. Niedersächsisches Landesamt für Denkmalpflege: Gaußstein Lichtenberg. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  45. Niedersächsisches Landesamt für Denkmalpflege: Gaußstein Garlste/Garlster Heide. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  46. 1845–1855 Das letzte Jahrzehnt und posthume Ehrungen. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2020-12-27]. (niem.).
  47. a b Bragg 2005 ↓, s. 1297.
  48. Encyklopedia PWN – gaus ↓.
  49. Braunschweigische Wissenschaftliche Gesellschaft: Carl Friedrich Gauß-Medaille. [w:] bwg-nds.de [on-line]. [dostęp 2020-12-26]. (niem.).
  50. Deutsche Mathematiker-Vereinigung (DMV): Gauß-Vorlesungen. [w:] www.mathematik.de [on-line]. [dostęp 2020-12-26]. (niem.).
  51. International Mathematical Union: Carl Friedrich Gauss Prize. [w:] www.mathunion.org [on-line]. [dostęp 2020-12-26]. (ang.).
  52. Wegner, G. Deutsche Forschungsschiffe und ihre Namen. T. 1, Eine Liste deutscher Forschungsschiffe seit 1862.. „Deutsches Schiffahrtsarchiv”. 23, s. 217–250, 2000. (niem.). 
  53. a b United States Geological Survey: Gaussberg. [w:] geonames.usgs.gov [on-line]. [dostęp 2020-12-26]. (ang.).
  54. SCAR Composite Gazetteer of Antarctica: Mount Gauss. [w:] data.aad.gov.au [on-line]. [dostęp 2020-12-26]. (ang.).
  55. SCAR Composite Gazetteer of Antarctica: Gauss Glacier. [w:] data.aad.gov.au [on-line]. [dostęp 2020-12-26]. (ang.).
  56. Gauß-Gesellschaft e.V: Satzung der Gauß-Gesellschaft e.V. Göttingen. [w:] www.gauss-gesellschaft-goettingen.de [on-line]. [dostęp 2020-12-26]. (niem.).
  57. Structurae. Internationale Datenbank und Galerie für Ingenieurbauwerke: Gaußturm. [w:] structurae.net [on-line]. [dostęp 2020-12-27]. (niem.).
  58. Gazetteer of Planetary Nomenclature: Gauss. [w:] planetarynames.wr.usgs.gov [on-line]. [dostęp 2020-12-26]. (ang.).
  59. (1001) Gaussia w bazie Jet Propulsion Laboratory (ang.)
  60. Gledhill 2008 ↓, s. 175.
  61. Niedersächsisches Landesamt für Denkmalpflege: Gauß-Denkmal. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  62. Niedersächsisches Landesamt für Denkmalpflege: Gauß-Weber-Denkmal. [w:] denkmalatlas.niedersachsen.de [on-line]. [dostęp 2020-12-27]. (niem.).
  63. Niedersächsische Staats- und Universitätsbibliothek Göttingen: 1777–1795 Die Jugend in Braunschweig. [w:] webdoc.sub.gwdg.de [on-line]. 2005. [dostęp 2020-12-27]. (niem.).
  64. Briefmarkenkatalog: Briefmarke › Carl Friedrich Gauss (1777-1855), mathematician, astronomer. [w:] colnect.com [on-line]. [dostęp 2020-12-26]. (ang.).
  65. Briefmarkenkatalog: Briefmarke › Gauss Plane of Complex Numbers. [w:] colnect.com [on-line]. [dostęp 2020-12-26]. (ang.).
  66. Deutsche Bundesbank 1995 ↓, s. 8–10.
  67. Deutsche Bundesbank 1995 ↓, s. 47.
  68. a b Deutsche Bundesbank 1995 ↓, s. 48.
  69. a b Die Vermessung der Welt. [w:] filmportal.de [on-line]. [dostęp 2021-09-03]. (niem.).
  70. Johann Carl Friedrich Gauß’s 241st Birthday. [w:] www.google.com [on-line]. 2018-04-30. [dostęp 2021-09-03]. (ang.).

Bibliografia edytuj

Linki zewnętrzne edytuj