Warstwa graniczna (mechanika płynów): Różnice pomiędzy wersjami

Drobne techniczne
m (- {{WEdycji|Zwiadowcę i 21, z czego Zwiadowca pracuje, a 21 się tylko przygląda}})
(Drobne techniczne)
'''Warstwa graniczna''' (Warstwa przyścienna) to- istotne pojęcie z zakresu [[Mechanika płynów|mechaniki płynów]] i [[aerodynamika|aerodynamiki]].
 
{{definicja|'''Warstwa graniczna jest to obszar w płynie w pobliżu sztywnych ścianek, w którym lepkość płynu oraz kształt ścianek wpływają decydująco na obraz przepływu.'''}}
 
 
===Idea warstwy granicznej===
 
===Idea warstwy granicznej===
Warstwa graniczna stanowi zazwyczaj cienką warstewkę tuż przy ścianie (np. opływanej bryły), stąd też w starszej polskiej literaturze określano ją terminem '''warstwa przyścienna'''. Płyn poruszający się poza warstwą graniczną, tj. zajmujący pozostałą część objętości określany jest często jako ''rdzeń''. W teorii warstwy granicznej rdzeń traktuje się jako [[płyn idealny]], gdyż obraz jego przepływu różni się od obrazu przepływu płynu idealnego w tak niewielkim stopniu, że różnice te mogą być pominięte. Podejście takie uprościło znacznie matematyczne rozważania nad przepływami oraz ułatwiło prowadzenie obliczeń dla oddziaływań płynu na ciała w nim zanurzone.
 
Koncepcja warstwy granicznej sformułowana została przez [[Ludwig Prandtl|Ludwika Prandtla]] na początku [[XX wiek]]u i przedstawiona publicznie [[12 sierpnia]] [[1904]] roku na Międzynarodowym Kongresie Matematycznym w [[Heidelberg]]u.
 
 
===Laminarna warstwa graniczna===
 
Sformułowana przez Prandtla koncepcja dotyczyła warstwy granicznej w warunkach [[przepływ stacjonarny|przepływu stacjonarnego]]. Uzyskał on równania opisujące ruch płynu w laminarnej warstwie granicznej (tzw. [[równania Pandtla]]) otrzymane jako uproszczenie [[Równanie Naviera-Stokesa|równania Naviera-Stokesa]] stanowiącego fundamentalne równanie ruchu płynu lepkiego.
 
 
'''===Równania Prandtla'''===
 
Przyjmując oś <math>\; x \,</math> prostokątnego układu współrzędnych równoległą do sztywnej ścianki ciała stałego, składową <math>\; x</math>-ową prędkości <math>\; u \,</math> równoległą do ścianki i zgodną z kierunkiem przepływu zasadniczego, natomiast oś <math>\, y \,</math> układu prostokątnego i <math>\; y</math>-ową składową prędkości <math>\; v \,</math> prostopadłe do ścianki, równania Prandtla przyjmują postać:
Pomimo zastosowanych uproszczeń równania Pandtla rozwiązać można jedynie w niezbyt licznych szczególnych przypadkach, w postaci tzw. [[Rozwiązania samopodobne|rozwiązań samopodobnych]]. Przykładem jest klasyczne rozwiązanie Blasiusa, mające postać regularną i opisujace tzw. [[Laminarna warstwa graniczna Blasiusa|laminarną warstwę graniczną Blasiusa]]. W bardziej skomplikowanych przypadkach rozwiązania równań Prandtla mają w niektórych sytuacjach postać osobliwą, co odpowiada zjawisku [[Oderwanie warstwy granicznej|oderwania warstwy granicznej]].
 
 
===Turbulentna warstwa graniczna===
 
Oderwania warstwy granicznej nie należy mylić z powstawaniem [[Turbulencja|turbulencji]]. Oprócz laminarnej warstwy granicznej, będącej przedmiotem rozważań Prandtla i jego następców, spotyka się również turbulentną warstwę graniczną.
Turbulizacja warstwy granicznej następuje w wyniku utraty jej stateczności. Jako kryterium stateczności stosuje się zazwyczaj [[Liczba Reynoldsa|liczbę Reynoldsa]] ''Re'', przy czym za wymiar charakterystyczny problemu przyjmuje się [[grubość warstwy granicznej]]. Często turbulizacja warstwy granicznej jest wynikiem zwiększania jej grubości w kierunku przepływu zasadniczego, co powoduje przekroczenie krytycznej wartości ''Re''.
 
 
===Zastosowania teorii warstwy granicznej===
 
Zjawiska zachodzące w warstwie granicznej wpływają decydująco na wielkość hydrodynamicznego oporu ruchu zanurzonych brył (np. karoserii samochodowych, okrętów podwodnych, etc.), a także na powstawanie siły nośnej na skrzydłach ptaków oraz samolotów. Dlatego też analiza zjawisk zachodzących w warstwie granicznej posiada fundamentalne znaczenie dla współczesnej techniki.
 
Zaproponowane przez Prandtla (1904) rozróżnienie przepływu [[płyn]]u na dwa regiony - cienką warstwę tuż przy ścianie (np. rury) oraz pozostałą część objętości płynu (rdzeń). Uprościło to matematyczne rozważania nad przepływami oraz ułatwiło prowadzenie obliczeń dla oddziaływań płynu na ciała w nim zanurzone. Charakter przepływu w tej warstwie może być laminarny lub burzliwy (w tym przypadku rozróżnia się dwie podwarstwy: burzliwą oraz lepką). Przykładowa grubość warstewki przyściennej może wynosić dla w pełni rozwiniętego przepływu burzliwego wody w rurze od setnych części do kilku milimetrów. Grubość tej warstwy spada wraz ze wzrostem liczby Re.
 
 
== Bibliohrafia ==
== Bibliografia ==
 
* L. Howarth: ''Laminar Boundary Layer'', in ''Handbuch der Physik'', herausgegeben von S. Flügge mit C. Truesdel, Bd. VIII/1 ''Strömungsmechanik I'', Springer, Berlin - Göttingen - Heidelberg, (1959).
* H. Schlichting: ''Grenzschicht-Theorie'', Braun, Karlsruhe, (1965).
Anonimowy użytkownik