Zdarzenia losowe niezależne: Różnice pomiędzy wersjami

:)
m (r2.7.1) (Robot dodał ms:Bebas (teori kebarangkalian))
(:))
'''Zdarzenia losowe niezależne''' -
'''Zdarzenia losowe niezależne''' - [[Zdarzenie losowe (teoria prawdopodobieństwa)|zdarzenia]] <math>A, B \in \mathcal{A} </math> na pewnej ustalonej [[przestrzeń probabilistyczna|przestrzeni probabilistycznej]] <math>(\Omega, \mathcal{A}, P)</math> spełniające warunek
 
: <math>P(A\cap B)=P(A)\cdot P(B)</math>.
 
Taka postać warunku na niezależność zdarzeń <math>A</math> i <math>B</math> wynika z intuicyjnego stwierdzenia: zdarzenie <math>A</math> nie zależy od zdarzenia <math>B</math>, jeśli wiedza nt. zajścia <math>B</math> nie ma wpływu na prawdopodobieństwo zajścia <math>A</math>. Co można zapisać jako <math>P(A|B)=P(A)\;</math>. Z tej intuicji i [[Prawdopodobieństwo warunkowe|wzoru na prawdopodobieństwo iloczynu zdarzeń]] (<math>P(A\cap B)=P(A|B)\cdot P(B)</math>) wynika powyższy wzór.
 
Niezależność można definiować także, dla większej liczby zdarzeń. I tak, jeżeli <math>A_1, \ldots, A_m\in \mathcal{A}</math>, to mówimy, że są one '''niezależne''', gdy dla każdego ściśle rosnącego ciągu <math>(i_1, \ldots, i_k)</math> o wyrazach ze zbioru <math>\{1,\ldots, m\}</math> spełniony jest warunek
 
: <math> P(A_{i_{1}} \cap ... \cap A_{i_{k}})=P(A_{i_{1}}) \cdot ... \cdot P(A_{i_{k}})</math>.
 
Definicję niezależności można rozszerzyć na nieskończony układ zdarzeń. Dokładniej, mówimy, że zdarzenia <math>A_1, A_2,\ldots </math> są niezależne, gdy dla każdej liczby naturalnej ''n'' zdarzenia <math>A_1, \ldots, A_n</math> są niezależne.
 
== Własności ==
* Z definicji wynika, że dwa [[Zdarzenia losowe rozłączne|zdarzenia rozłączne]] są niezależne, gdy przynajmniej jedno z nich ma prawdopodobieństwo zerowe.
* Gdy zdarzenia <math>A_1, \ldots, A_n</math> są niezależne, to zdarzenia do nich przeciwne <math> A_1^\prime, \ldots, A_n^\prime </math> też są niezależne oraz:
: <math>P\left(\bigcup_{k=1}^n A_k\right)= P\left( \left( \bigcap_{k=1}^n A_k^\prime \right)^\prime \right) = 1-P\left( \bigcap_{k=1}^n A_k^\prime \right) = 1-\prod_{k=1}^n P(A_k^\prime) = 1-\prod_{k=1}^n(1-P(A_k))</math>.
Por. [[prawa De Morgana]].
Anonimowy użytkownik