Kryterium Nyquista: Różnice pomiędzy wersjami

Dodane 59 bajtów ,  8 lat temu
wiki
(drobne redakcyjne)
(wiki)
Znacznik: Z internetu mobilnego
1. Zakładamy, że rozłączamy sprzężenie zwrotne w układzie.
<br />
2. Wyznaczamy transmitancje[[transmitancja operatorowa|transmitancję operatorową]] otrzymanego układu otwartego: <math>G_0(s) = G_r(s)*G(s) = L_0(s)/M_0(s)\,</math>.
<br />
3. Zakładamy, że układ ma ''k'' biegunów (miejsc zerowych mianownika transmitancji) w prawej półpłaszczyźnie zespolonej i <math>n - k</math> biegunów w lewej (nie ma biegunów na osi urojonej).
<br />
4. Transmitancje[[transmitancja widmowa|Transmitancję widmową]] układu otwartego oznaczamy przez <math>G_0(j\omega)\,</math>
<br /><br />
Jeżeli spełnione są powyższe założenia to układ zamknięty jest stabilny wtedy i tylko wtedy, gdy przyrost argumentu wyrażenia <math>1 + G_0(j\omega)\,</math> przy zmianie <math>\omega</math> w zakresie od 0 do <math>\infty</math> jest równy <math>k\pi</math>, co zapisujemy następująco:
3496

edycji