Liczby wymierne: Różnice pomiędzy wersjami

Dodane 16 bajtów ,  7 lat temu
dopisalem
m (Wycofano edycje użytkownika 31.0.185.203 (dyskusja). Autor przywróconej wersji to Addbot.)
(dopisalem)
{{definicja|Ułamki liczb całkowitych o niezerowym mianowniku; liczby rzeczywiste mające skończone, bądź okresowe od pewnego miejsca [[rozwinięcie dziesiętne]].}}
'''Liczby wymierne''' – [[liczby]], które można zapisać w postaci [[iloraz]]u dwóch [[liczby całkowite|liczb całkowitych]] czyli 0,75,23… gdzieGdzie druga jest różna od [[zero|zera]]. Są to więc liczby, które można przedstawić za pomocą [[ułamek zwykły|ułamka zwykłego]]. [[Zbiór]] liczb wymiernych oznaczany jest zazwyczaj symbolem <math>{\mathbb Q}</math>. Wobec tego:
: <math>\mathbb Q = \left\{ {m \over n} : m, n \in \mathbb Z, n \ne 0 \right\}</math>.
 
Anonimowy użytkownik