Dzielenie: Różnice pomiędzy wersjami

Usunięte 10 bajtów ,  6 lat temu
ktoś wcisnął w środek zdania swój komentarz
m (Wycofano edycje użytkownika 79.187.137.77 (dyskusja). Autor przywróconej wersji to Imperfect Reputation.)
(ktoś wcisnął w środek zdania swój komentarz)
: <math>\frac{a}{b} = {a}\cdot{b^{-1}}</math>, dla <math>\,{b \neq 0}</math>
 
gdzie <math>\,{b^{-1}}</math> tojest [[element odwrotny|elementem odwrotnym]] do <math>b</math>.
Ponieważ dzielenie definiujemy jako mnożenie przez odwrotność, nie można dzielić przez 0, gdyż nie istnieje liczba odwrotna do 0, ze względu na mnożenie (tzn. nie istnieje liczba, która, pomnożona przez 0, da nam element neutralny mnożenia, czyli 1).
 
gdzie <math>\,{b^{-1}}</math> to [[element odwrotny]] do <math>b</math>.
Ponieważ dzielenie definiujemy jako mnożenie przez odwrotność, nie można dzielić przez 0, gdyż nie istnieje liczba odwrotna do 0, ze względu na mnożenie (tzn. nie istnieje liczba, która, pomnożona przez 0, da nam element neutralny mnożenia, czyli 1).
 
 
W działaniu tym występują dwa [[operand]]y nazywające się '''dzielną''' i '''dzielnikiem'''. Wynik dzielenia nazywany jest '''ilorazem'''.
Anonimowy użytkownik