Dyskretyzacja (matematyka): Różnice pomiędzy wersjami

drobne redakcyjne
(lit.)
(drobne redakcyjne)
* [[ekstrapolator rzędu zerowego]] ({{ang.|Zero-order hold, ZOH}}).
 
[[Plik:Finite element solution.svg|right|thumb|Rozwiązanie zdyskretyzowanego [[równanie różniczkowe cząstkowe|cząstkowego równania różniczkowego]], uzyskane za pomocą [[metoda elementów skończonych|metody elementów skończonych]].]]
Dyskretyzacja związana jest także z [[matematyka dyskretna|matematyką dyskretną]] i jest ważną częścią komputerowych [[obliczenia ziarniste|obliczeń ziarnistych]] stosowanych w [[Mechanika komputerowa|mechanice komputerowej]]. W tym kontekście ''dyskretyzacja'' odnosi się także do modyfikacji zmiennej w kategorii ''ziarnistości'' gdy agreguje się wiele zmiennych dyskretnych albo dokonuje się fuzji wielu kategorii dyskretnych.
 
Wiele reguł opiera się na właściwej sobie metodzie aproksymacji składnika powiększania pola (pod krzywą funkcji, która w powyższym wzorze podlega całkowaniu). Należą do nich:
* reguła prostokąta wprzód
* reguła prostokataprostokąta wstecz
* reguła trapezu.
 
W regule prostokatnejprostokątnej wprzód obszar aproksymuje się przez prostokąt wyznaczany wprzód od chwili kT do chwili kT+T i bierze jako amplitudę prostokąta wartość napotkaną w kT. Szerokość takiego prostokąta wynosi T. Można więc zapisać równanie w pierwszej aproksymacji:
:<math>u_{1} (kT + T) = u_{1} (kT)+ Te(kT)\,</math>
gdzie wyrażenie <math>u_{1}(kT)\,</math> reprezentuje obszar pod całkowaną krzywą e(t) w przedziale od t = 0 do t = kT. Po zastosowaniu [[transformata Z|transformaty Z]] do powyższej zależności otrzymuje się:
:<math>G_{F}(z)= \frac {U_{1}(z)}{E(z)}= \frac{T}{z-1} = \frac{1}{\frac{z-1}{T}}\,</math>.
 
W regule prostokatnejprostokątnej wstecz obszar aproksymuje się przez prostokąt wyznaczany wstecz od chwili kT do kT-T i bierze jako amplitudę prostokąta wartość napotkaną w kT. Szerokość takiego prostokąta wynosi T. Można więc zapisać równanie w pierwszej aproksymacji:
:<math>u_{2} (kT) = u_{2} (kT-T)+ Te(kT)\,</math>
Po zastosowaniu [[transformata Z|transformaty Z]] do powyższej zależności otrzymuje się:
<math> s \leftarrow \frac{2}{T} \frac{z-1}{z+1}\,</math>.
 
Szczególnie interesujące jest to, że reguła bilinearna odzworowujeodwzorowuje stabilną półpłaszczyznę s
dokładnie na stabilny obszar [[płaszczyzna Z|płaszczyzny z]], przy tym cała oś <math>j\omega\,</math> [[płaszczyzna S|płaszczyzny s]] jest skompresowana na długości obwodu [[okrąg jednostkowy|okręgu jednostkowego]].