Wartość oczekiwana: Różnice pomiędzy wersjami

Usunięte 185 bajtów ,  4 lata temu
brak opisu edycji
[wersja przejrzana][wersja nieprzejrzana]
m (Dodaję nagłówek przed Szablon:Przypisy)
Nie podano opisu zmian
 
== Definicja formalna ==
Jeżeli <math>X</math> jest zmienną losową na [[przestrzeń probabilistyczna|przestrzeni probabilistycznej]] <math>(\Omega, \mathcal F, \mathbb P)</math> o wartościach w <math>\mathbb R</math>, to wartością oczekiwaną zmiennej losowej <math>X</math> nazywa się liczbęliczb
 
: <math>\mathbb EX := \int\limits_\Omega X d\mathbb P</math><ref>{{Cytuj|autor=J. Jakubowski, R. Sztencel|tytuł=Wstęp do teorii prawdopodobieństwa|data=2010|miejsce=Warszawa|s=82}}</ref>
NIC!
 
o ile ona istnieje, tzn. jeżeli:
: <math>\mathbb E|X| = \int\limits_\Omega |X| d\mathbb P < +\infty</math><ref>{{Cytuj|autor=J. Jakubowski, R. Sztencel|tytuł=Wstęp do teorii prawdopodobieństwa|data=2010|miejsce=Warszawa|s=81}}</ref>.