Układ współrzędnych kartezjańskich: Różnice pomiędzy wersjami

→‎Ćwiartki i oktanty: przypis EPWN, szablon
(→‎Ćwiartki i oktanty: przypis EPWN, szablon)
 
Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery [[przystawanie (geometria)|przystające]], [[zbiór ograniczony|nieograniczone]] zbiory nazywane '''ćwiartkami'''; [[brzeg (matematyka)|brzeg]] każdej z nich składa się z dwóch półosi<ref>Nie jest to jednak podział na podzbiory rozłączne; takiego podziału na cztery części przystające nie da się dokonać, bowiem początek układu musiałby należeć do jednej tylko części.</ref>. Często numeruje się je od pierwszej do czwartej i oznacza [[rzymski system zapisywania liczb|symbolami rzymskimi]]: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.
 
Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych '''oktantami'''<ref name="epwn">{{Encyklopedia PWN | id = 3950621 | tytuł = oktant | data dostępu = 2021-10-03 }}</ref>, zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa ''pierwszym'', jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa '''ortantem'''{{fakt|data=2021-10}}.
 
== Skrętność przestrzeni trójwymiarowej ==
63 580

edycji