Problem przesunięcia sofy

problem matematyczny
(Przekierowano z Stała sofy)

Problem przesunięcia sofy – nierozwiązane do dziś zadanie, sformułowane przez austriacko-kanadyjskiego matematyka Leo Mosera w 1966 roku[1]. Problem dotyczy znalezienia kształtu sofy o jak największym polu A, tak aby można było ją przesunąć w korytarzu o kształcie litery L szerokości 1. Otrzymane pole „A” jest określane jako „stała sofy”. Dokładna wartość stałej A nie jest znana.

Pole sofy Hammersleya to 2,2074..., jednak nie jest to optymalne rozwiązanie problemu

Uniwersytet w Aalborgu wykorzystuje problem przesunięcia sofy jako zadanie pilotażowe dla studentów pierwszego roku matematyki i informatyki. Muszą oni spróbować rozwiązać ten problem w grupach[2].

Dolne i górne kresyEdytuj

Półkole o promieniu 1 spełnia warunki problemu i można je przesunąć przez narożnik. Pole takiej figury to   i jest to łatwe do uzyskania dolne ograniczenie na wartość stałej sofy.

John Hammersley otrzymał większe dolne ograniczenie   tworząc sofę składającą się z dwóch ćwiartek kół po każdej stronie prostokąta 1 na 4/π, z wyciętym półkolem o promieniu  [3][4].

Matematyk Joseph L. Gerver znalazł sofę dającą jeszcze wyższe ograniczenie na stałą sofy: 2,219531669...[5]

Hammersley dowiódł natomiast prostym argumentem, że stała sofy może wynosić najwyżej  [6][7].

PrzypisyEdytuj

  1. Leo Moser. Moving furniture through a hallway. „SIAM”. 8, s. 381, 1966. (ang.). 
  2. Aalborg Universitet og forskningsprojekter. [w:] Forskningslignende situationer: En empirisk, didaktisk undersøgelse af et eksperimentelt matematikforløb for danske gymnasieelever [on-line]. ku.dk, 2007-06. s. 43–44. [dostęp 2014-06-21]. (duń.).
  3. Hallard T. Croft, Kenneth J. Falconer, Richard K. Guy: Unsolved Problems in Geometry. T. II. Springer-Verlag, 1994, seria: Problem Books in Mathematics; Unsolved Problems in Intuitive Mathematics. ISBN 978-0-387-97506-1. (ang.).
  4. Joseph L. Gerver. On Moving a Sofa Around a Corner. „Geometriae Dedicata”. 42 (3), s. 267–283, 1992. DOI: 10.1007/BF02414066. ISSN 0046-5755. (ang.). 
  5. Moving Sofa Constant. mathcad.com. [zarchiwizowane z tego adresu (2008-01-07)]. by Steven Finch at MathSoft, zawiera diagramy sofy Gervera.
  6. Neal R. Wagner. The Sofa Problem. „The American Mathematical Monthly”. 83 (3), s. 188–189, 1976. DOI: 10.2307/2977022. (ang.). 
  7. Ian Stewart: Another Fine Math You’ve Got Me Into.... Mineola, N.Y.: Dover Publications, January 2004. ISBN 0-486-43181-9. (ang.).