Symetria płaszczyznowa
Symetria płaszczyznowa względem płaszczyzny P – odwzorowanie geometryczne przestrzeni przyporządkowujące każdemu punktowi A tej przestrzeni punkt A’ taki, że punkty A i A’ leżą na prostej prostopadłej do P, w równych odległościach od płaszczyzny P i po jej przeciwnych stronach. Punktami stałymi symetrii płaszczyznowej są punkty płaszczyzny P i tylko one.
Jeśli figura geometryczna F jest swoim własnym obrazem w symetrii płaszczyznowej o płaszczyźnie P, to P nazywamy płaszczyzną symetrii figury F[1]. Figury posiadające płaszczyznę symetrii nazywamy płaszczyznowo symetrycznymi.
Dla dowolnej izometrii przestrzeni istnieją jedna, dwie, trzy lub cztery symetrie płaszczyznowe, z których można złożyć tę izometrię. Inaczej mówiąc symetrie płaszczyznowe są zbiorem generatorów grupy izometrii przestrzeni.
Zobacz teżEdytuj
PrzypisyEdytuj
- ↑ płaszczyzna symetrii, [w:] Encyklopedia PWN [online] [dostęp 2022-03-12] .