Test dla wariancji

Test dla wariancjitest statystyczny służący do weryfikacji hipotez statystycznych dotyczących wartości wariancji w populacji generalnej lub też do porównania wartości wariancji w dwóch lub kilku populacjach – na podstawie znajomości wartości badanej cechy w losowej próbie (lub w kilku próbach).

Rozstrzygnięcie pytań dotyczących wariancji jest ważne m.in. dlatego, że wiele testów służących do porównania wartości średnich w dwóch lub kilku populacjach wymaga przyjęcia założenia o równości wariancji w tych populacjach (tak zwane założenie o jednorodności wariancji). Ponadto wariancja może być miernikiem dokładności w procesie pomiarowym lub produkcyjnym (zbyt duża wariancja wyników pomiaru może na przykład świadczyć o uszkodzeniu lub rozregulowaniu aparatury lub urządzeń).

Struktura i podział testówEdytuj

Hipotezy dotyczące wariancji testuje się zgodnie z ogólnymi zasadami testowania hipotez statystycznych: formułujemy hipotezy, zakładamy poziom istotności   – dopuszczalną wartość błędu pierwszego rodzaju (tj. prawdopodobieństwo odrzucenia prawdziwej hipotezy zerowej) i na podstawie danych z próby wyznaczamy wartość statystyki testowej, po czym porównujemy ją z wartościami krytycznymi odczytanymi z tablic odpowiedniego rozkładu teoretycznego. Przy konstrukcji wszystkich omawianych niżej testów przyjmowane jest założenie, że badane cechy mają w populacjach generalnych rozkład normalny.

  • Postać stosowanej statystyki testowej zależy od kilku czynników:
    • czy badamy hipotezę dotyczącą jednej, dwóch czy wielu wariancji?
    • czy porównujemy próby niezależne, czy zależne (skorelowane, powiązane)?
    • jaka jest liczebność próby (prób)?. Przyjmuje się na ogół (dość arbitralnie), że próba jest duża, gdy jej liczebność przekracza 30 obserwacji   (można wtedy zakładać, że statystyki mają rozkład normalny – patrz centralne twierdzenie graniczne). W przypadku przeciwnym – mamy do czynienia z próbami małymi.

Poniżej przedstawiono w skrócie kilka testów najczęściej stosowanych w poszczególnych sytuacjach.

Testy dla jednej wariancjiEdytuj

Porównujemy wariancję w populacji z „wzorcową” wartością  

Hipotezy mają postać:

  •  
  •   postać hipotezy alternatywnej zależy od sformułowania zagadnienia:
 
(1)

albo

 
(2)

albo też

 
(3)

Postać statystyki i dalszy przebieg testu zależy od rozmiaru próby.

Próby małeEdytuj

Wyznaczamy wartość statystyki

 

gdzie:

  jest wariancją z próby,
  jest liczebnością próby.

Statystyka ta ma przy założeniu prawdziwości hipotezy zerowej rozkład chi-kwadrat z   stopniami swobody. Wartość krytyczną   odczytujemy z tablic rozkładu chi-kwadrat dla   stopni swobody oraz:

  • dla poziomu istotności   gdy hipoteza alternatywna   ma postać (1),
  • dla poziomu istotności   gdy hipoteza alternatywna   ma postać (2),
  • gdy hipoteza alternatywna   ma postać (3) odczytujemy dwie wartości krytyczne:
    •   dla poziomu istotności   oraz
    •   dla poziomu istotności  

Obszar krytyczny:

  • w przypadku (1) obszar krytyczny jest prawostronny, czyli  
  • w przypadku (2) obszar krytyczny jest lewostronny, czyli  
  • w przypadku (3) obszar krytyczny jest obustronny, tzn.  

Jeżeli wyznaczona wartość statystyki   nie należy do obszaru krytycznego   to nie ma podstaw do odrzucenia hipotezy zerowej. Jeżeli wyznaczona wartość statystyki   należy do obszaru krytycznego   to hipotezę zerową odrzucamy na korzyść hipotezy alternatywnej.

Próby dużeEdytuj

Dla liczebności próby   możemy przekształcić wyznaczoną w poprzednim punkcie statystykę chi-kwadrat w statystykę   o rozkładzie normalnym obliczając:

 

Nie oznacza to, że nie można stosować nadal statystyk dla małych prób. Są one nadal dokładniejsze, wymagają jednak komputerowego obliczania rozkładu, gdyż tablice na ogół nie sięgają tak daleko.

W powyższym wzorze   oraz   oznaczają statystykę chi-kwadrat i jej liczbę stopni swobody wyznaczone tak, jak w poprzednim paragrafie (dla prób małych).

Wartości krytyczne znajdujemy z tablic dystrybuanty rozkładu normalnego. Jeżeli   jest dystrybuantą standardowego rozkładu normalnego, a   – funkcją odwrotną do dystrybuanty, natomiast   – założonym poziomem istotności – to odczytujemy:

  • dla przypadku (1)
 
  • w przypadku (2)
 
  • w przypadku (3) mamy 2 wartości graniczne:
 
oraz
 

Dalszy przebieg testu i wnioski – jak poprzednio.

Testy dla dwóch wariancjiEdytuj

Mamy tu do czynienia z dwiema próbami o liczebnościach   i   znamy też „wariancje z próby” (estymatory wariancji)   i   – testujemy hipotezę, że próby te pochodzą z populacji o jednakowych wariancjach. Postać hipotez:

  •  
  •   postać hipotezy alternatywnej zależy od sformułowania zagadnienia:
 
(4)

albo

 
(5)

albo też

 
(6)

Testy dla dwóch prób niezależnychEdytuj

Próby małeEdytuj

W tym przypadku można wykorzystać kilka testów:

Test F (Fishera)Edytuj

Niech   i   będą próbami statystycznymi z rozkładu normalnego (test nie jest odporny na naruszenia tego założenia[1][2]), ze średnimi próbkowymi odpowiednio:

 

Niech

 

będą wariancjami próbkowymi. Wtedy test statystyczny

 

ma rozkład F Snedecora z   stopniami swobody jeśli hipoteza zerowa o równości wariancji jest prawdziwa. Z tablic tego rozkładu, dla testu prawostronnego, odczytuje się wartość krytyczną:

 

Jeżeli stosuje się test lewostronny, to najprościej jest zamienić miejscami próby 1 i 2.

W przypadku testu obustronnego wyznacza się

 

oraz drugą wartość graniczną ze wzoru:

 
Test t-StudentaEdytuj

(dwie małe próby o równych liczebnościach)

Stosujemy statystykę

 

(  jest tutaj wspólną liczebnością obu prób).

Statystyka ta ma rozkład Studenta o   stopniach swobody.

Test t-Studenta stosujemy w przypadku, gdy próby pochodzą z populacji o rozkładzie normalnym i gdy nie znamy wariancji.

Test LinkaEdytuj

Gdy znane są jedynie rozstępy   i   obu prób, wtedy wyznaczamy statystykę

 

przy czym w liczniku powinna być większa wartość (hipoteza   ma postać (4)). Statystykę tę porównujemy z wartością krytyczną odczytaną ze specjalnych tablic dla testu Linka – patrz np. (Zieliński, 1972).

Próby dużeEdytuj

 

W tym przypadku można wykorzystać statystykę z o rozkładzie normalnym:

 

i porównać jej wartość z wartościami granicznymi wyznaczonymi z tablicy standaryzowanego rozkładu normalnego w dokładnie taki sam sposób, jak opisano to dla testu dla jednej wariancji i dużej próby.

Tak jak poprzednio, nie oznacza to, że nie można stosować nadal statystyk dla małych prób. Są one nadal dokładniejsze, wymagają jednak komputerowego obliczania rozkładu, gdyż tablice na ogół nie sięgają tak daleko.

Testy dla dwóch prób zależnychEdytuj

Przypadek taki zachodzi np. gdy badamy ten sam zbiór obiektów w dwóch różnych sytuacjach (w różnych warunkach) – wtedy na ogół liczebności prób są jednakowe  

Test Morgana dla prób małychEdytuj

Wyznaczamy statystykę o rozkładzie t-Studenta:

 

gdzie   jest wspólną liczebnością prób, a  współczynnikiem korelacji Pearsona, który jest miarą korelacji pomiędzy wynikami w próbie 1 i próbie 2. Tę wartość statystyki t porównujemy z wartością krytyczną (lub 2 wartościami krytycznymi) odczytanymi z tablic rozkładu t-Studenta dla   stopni swobody.

Test Morgana dla prób dużychEdytuj

Test przebiega podobnie, z tą różnicą, że wartości graniczne można odczytać z tablicy rozkładu normalnego (bo dla dużych wartości stopni swobody rozkład t-Studenta zmierza asymptotycznie do rozkładu normalnego).

Testy dla wielu wariancjiEdytuj

Mamy k prób. Hipotezy mają postać:

 
  „nie  ” (nie wszystkie wariancje są równe)

Próby niezależneEdytuj

Test BartlettaEdytuj

Gdy liczebności prób są różne – stosujemy test Bartletta, oparty na statystyce chi-kwadrat:

 

przy czym we wzorze tym:

  są liczebnościami poszczególnych prób,
  – wariancjami z próby,
 
 
 
 

Obliczona wartość   jest porównywana z wartością krytyczną wyznaczoną z tablic rozkładu chi-kwadrat dla   stopni swobody. Obszar krytyczny jest zawsze prawostronny (zbyt duże wartości statystyki świadczą o niejednorodności wariancji).

Aby można było stosować test Bartletta – musi być spełnione założenie, że liczebności prób nie są skrajnie małe, tzn. że   dla każdego  

Gdy mamy k prób równolicznych, każda o liczebności n – możemy stosować też inne testy (prostsze rachunkowo):

Test HartleyaEdytuj

Mamy   prób o jednakowej liczebności   Obliczamy wartość statystyki   zgodnie ze wzorem:

 

gdzie:

  •   – estymatory wariancji dla każdej z prób  
  •   jest największą spośród wariancji  
  •   jest najmniejszą spośród wariancji  

Wartość statystyki   musi być porównywana z wartościami krytycznymi odczytywanymi z tablic specjalnie skonstruowanych dla tego testu (p. Zieliński 1972). Test Hartleya ma zawsze prawostronny obszar krytyczny.

Test CadwellaEdytuj

Jest to test do badania hipotezy o jednorodności wariancji dla k prób niezależnych i równolicznych (o liczebności n każda). Test ten jest oparty na wartości rozstępów, wyznaczamy mianowicie wartość statystyki:

 

(stosunek największego do najmniejszego rozstępu w badanych próbach) i porównujemy tę wartość z wartością krytyczną odczytaną z tablic specjalnie dostosowanych do tego testu, która zależy od poziomu istotności   liczby prób k i ich liczebności n.

Test ten, tak jak poprzednie, jest zawsze prawostronny.

Próby zależneEdytuj

Test PatnaikaEdytuj

Mamy   prób zależnych o liczebności   każda. Liczebności powinny spełniać warunek   Test oparty jest na wartościach rozstępów poszczególnych prób. Wyznaczamy dwie wartości:

  • średni rozstęp
 
oraz
  • „rozstęp rozstępów”
 

po czym porównujemy wartość stosunku   z odpowiednią wartością krytyczną   Zarówno ta wartość krytyczna, jak i stała   musi być odczytana z tablic specjalnie przygotowanych dla tego testu. Obszar krytyczny testu jest prawostronny, tj. gdy   – wnioskujemy, że wariancje w porównywanych populacjach nie są jednorodne. W takim przypadku – można stosować ten test sekwencyjnie (w kolejnych podgrupach).

Zobacz teżEdytuj


PrzypisyEdytuj

  1. G.E.P. BOX, Non-Normality and Tests on Variances, „Biometrika”, 40 (3–4), 1953, s. 318–335, DOI10.1093/biomet/40.3-4.318, ISSN 0006-3444, JSTOR2333350 [dostęp 2017-02-19] (ang.).
  2. Carol A. Markowski, Edward P. Markowski, Conditions for the Effectiveness of a Preliminary Test of Variance, „The American Statistician”, 44 (4), 1990, s. 322–326, DOI10.2307/2684360, JSTOR2684360 [dostęp 2017-02-19].1 stycznia

BibliografiaEdytuj

  • Zieliński R., „Tablice statystyczne”, PWN, Warszawa 1972
  • Barańska Z., „Podstawy metod statystycznych dla psychologów”, Wyd. Uniw. Gdańskiego, Gdańsk 2000, ​ISBN 83-7017-839-1​ (m.in. cytowane są tablice dla testów Patnaika i Cadwella)