Otwórz menu główne

Twierdzenie Abela-Ruffiniego

Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki).

Mówiąc krótko, nie istnieją ogólne wzory na rozwiązania takiego równania.

Twierdzenie Abela-Ruffiniego nie stwierdza, że równanie stopnia wyższego niż 4 nie ma rozwiązań, a jedynie, że nie ma ogólnej metody na dokładne wyrażenie rozwiązań (każde równanie algebraiczne o współczynnikach zespolonych ma co najmniej jedno rozwiązanie zespolone – zob. Zasadnicze twierdzenie algebry).

Na przykład rozwiązania równania kwadratowego postaci dla wyrażają się wzorami:

Analogiczne, choć bardziej złożone, wzory można podać dla równania stopnia 3 i stopnia 4. Twierdzenie Abela-Ruffiniego mówi, że dla równań stopnia wyższego niż 4 wzory takie nie istnieją.

Jest jasne, że w szczególnych przypadkach rozwiązania dają się znaleźć w postaci dokładnej (przykładem jest równanie ), natomiast w sytuacji ogólnej można obliczać je z dowolną dokładnością za pomocą metod przybliżonych, na przykład metody Newtona-Raphsona.

Przykładem równania stopnia 5, które nie może być rozwiązane w opisany w twierdzeniu sposób (tj. jego pierwiastki nie wyrażają się za pomocą skończonej liczby działań arytmetycznych i pierwiastkowania), jest równanie

Dokładne kryterium, które pozwala stwierdzić, kiedy pierwiastki równania wyrażają się w skończonej postaci przez pierwiastniki podaje teoria Galois: jest tak wtedy i tylko wtedy, gdy grupa Galois tego równania jest rozwiązalna. Ponieważ grupy równań stopnia 2, 3 i 4 zawsze są rozwiązalne, teoria Galois mówi, że odpowiednie typy równań zawsze mają rozwiązania przez pierwiastniki.

HistoriaEdytuj

 
Paolo Ruffini, Teoria generale delle equazioni, 1799

Problem rozwiązalności takich równań badany był od końca XVI wieku, gdy matematycy włoscy podali wzory na rozwiązania równań stopni 3 i 4. Zmagali się z nim Bézout, Euler i Lagrange, jednak dopiero Paolo Ruffini wpadł na pomysł, by udowodnić, że w przypadku równań stopnia wyższego niż 4 odpowiednie wzory nie istnieją. Opublikowany przez niego w roku 1799 dowód twierdzenia (Ruffini podał pięć dowodów) zawierał pewne nieścisłości i został zignorowany przez społeczność matematyków – być może przyczyną był fakt, że Ruffini był także lekarzem. W pełni zadowalający dowód opublikował w roku 1824 Niels Henrik Abel, został on następnie uproszczony w roku 1845 przez Pierre’a Wantzela. Jednak znacznie głębsza analiza problemu zawarta jest w pracach Évariste’a Galois pod postacią teorii Galois.