Algorytm Edmondsa-Karpa
Algorytm Edmondsa-Karpa jest jedną z realizacji metody Forda-Fulkersona rozwiązywania problemu maksymalnego przepływu w sieci przepływowej. Jego złożoność czasowa wynosi jest zatem wolniejszy od innych znanych algorytmów przepływowych działających w czasie takich jak algorytm relabel-to-front, czy algorytm trzech Hindusów. W praktyce jednak złożoność pesymistyczna rzadko jest osiągana, co w połączeniu z prostotą czyni algorytm Edmondsa-Karpa bardzo użytecznym, szczególnie dla grafów rzadkich.
Rodzaj | |
---|---|
Struktura danych | |
Złożoność | |
Czasowa |
O(VE²) |
Algorytm ten został odkryty przez rosyjskiego naukowca, E.A. Dinica w roku 1970[1], i niezależnie przez Jacka Edmondsa i Richarda Karpa w roku 1972[2]. Artykuł Dinica zawiera dodatkowe techniki, które obniżają czas działania do (algorytm z tą poprawką nazywa się obecnie algorytmem Dynica).
Algorytm
edytujIdea algorytmu jest identyczna z ideą metody Forda-Fulkersona, z dodatkowym warunkiem: ścieżka powiększająca, którą szukamy w każdym kroku algorytmu, musi być najkrótsza, czyli zawierać minimalną możliwą liczbę (nie wagę!) krawędzi. Taką ścieżkę znajduje się uruchamiając algorytm przeszukiwania grafu wszerz w sieci residualnej.
algorytm Edmonds-Karp wejście c[u,v] //pojemności krawędzi s,t //źródło i ujście wyjście f[u,v] //maksymalny przepływ // stworzenie sieci residualnej zdefiniuj r[u,v] jako c[u,v] – f[u,v] ścieżka := true dopóki ścieżka wykonaj // znalezienie ścieżki z s do t w sieci residualnej p := BFS(r[],s,t) jeżeli ścieżka nie istnieje ścieżka := false w przeciwnym wypadku // powiększenie przepływu na ścieżce p a := min {r[u,v] : (u,v) należące do p} dla każdej krawędzi (u,v) należącej do p f[u,v] = f[u,v]+a f[v,u] = f[v,u]-a
Poprawność i złożoność
edytujPoprawność algorytmu wynika wprost z twierdzenia Forda-Fulkersona: po zakończeniu działania w grafie nie może być ścieżki powiększającej, przepływ jest więc maksymalny. Przystępny dowód oszacowania złożoności czasowej można znaleźć w[3], opiera się on na fakcie, że długość ścieżki powiększającej nie może maleć, a utrzymywać się na tym samym poziomie może przez co najwyżej kroków algorytmu (czyli jest co najwyżej kroków, jako że długość ścieżki nie przekroczy ).
Przykład
edytujDana jest następująca sieć przepływowa:
Wierzchołek A jest źródłem, G ujściem. Pary liczb na krawędziach oznaczają odpowiednio bieżący przepływ i maksymalną pojemność krawędzi. Pojemność residualna krawędzi z do to pojemność maksymalna zmniejszona o aktualny przepływ. Należy zwrócić uwagę na to, że f[u,v] może być ujemne, co powiększa pojemność krawędzi.
W powstałej sieci nie ma już ścieżek powiększających, zatem znaleziony przepływ o wielkości 5 jest maksymalny. Przykład dobrze ilustruje podstawową własność algorytmu Edmondsa-Karpa: długości ścieżek powiększających w kolejnych krokach nie mogą maleć.
Zobacz też
edytujPrzypisy
edytuj- ↑ E.A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation, Советский мат, том 11, Доклады 1970.
- ↑ Jack Edmonds, Richard Karp, Theoretical improvements in algorithmic efficiency for network flow problems, Journal of the ACM, volume 19/1972, 248-264 (http://www.akira.ruc.dk/~keld/teaching/algoritmedesign_f03/Artikler/08/Edmonds72.pdf).
- ↑ Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford Wprowadzenie do algorytmów, wyd. 7, WNT 2007, ISBN 83-204-3149-2.