Otwórz menu główne

Kwantowe zjawisko Halla

(Przekierowano z Kwantowy efekt Halla)

Kwantowe zjawisko Halla, kwantowy efekt Hallazjawisko fizyczne mające te same podstawy co klasyczne zjawisko Halla, ale występujące w niższych temperaturach i silniejszych polach magnetycznych.

Obniżanie temperatury i zwiększanie pola magnetycznego pozwala zaobserwować:

  • zjawisko Szubnikowa-de Haasa (oscylacje kwantowe),
  • całkowite kwantowe zjawisko Halla,
  • ułamkowe kwantowe zjawisko Halla.

Całkowite kwantowe zjawisko Halla wykorzystywane jest obecnie jako podstawa wyznaczania oma (jednostki oporu elektrycznego w układzie SI).

(Całkowite) kwantowe zjawisko HallaEdytuj

 
Wyniki pomiarów (całkowitego) kwantowego zjawiska Halla

Jego odkrycie zostało w 1985 roku uhonorowane Nagrodą Nobla dla Klausa von Klitzinga. Od jego nazwiska pochodzi nazwa niestandardowej jednostki oporu elektrycznego: klitzing.

Warunkami koniecznymi do zaobserwowania kwantowego zjawiska Halla są:

  • bardzo niska temperatura (< 4,2 K),
  • silne pole magnetyczne (do kilku tesli); kwantowe zjawisko Halla łatwo zaobserwować na wykresie zależności oporu Halla (napięcie Halla podzielone przez prąd sterujący płynący wzdłuż próbki) od indukcji pola magnetycznego,
  • specjalna struktura próbki – taka, by elektrony przewodnictwa miały w niej swobodę tylko w dwóch wymiarach (ang. two dimensional electron gas – 2DEG).

Kwantowe zjawisko Halla polega na przyjmowaniu przez opór elektryczny materiału określonych wartości dyskretnych, podobnie jak inne skwantowane wielkości fizyczne (ładunek elektryczny, pęd, energia elektronów w atomach pierwiastków chemicznych). Wartość oporu elektrycznego jest opisana wzorem:

 

gdzie:

 stała Plancka,
  – liczba naturalna (1, 2, 3,...),
 ładunek elektryczny elementarny

i dla kolejnych liczb naturalnych wynosi on w przybliżeniu 25813, 12906, 8604, 6453, 5163 Ω itd.

Ułamkowe kwantowe zjawisko HallaEdytuj

 
Wyniki pomiarów ułamkowego kwantowego zjawiska Halla

W 1998 roku jego odkrycie również zostało uhonorowane Nagrodą Nobla.

Kwantyzacja oporu elektrycznego nieskończonej studni kwantowejEdytuj

Mimo że laboratoryjna realizacja opornika którego kontrolowany opór byłby skwantowany jest trudna kwantyzacje oporu elektrycznego z klitzingiem można przewidzieć już w prostych modelach kwantowych takich jak np. studnia potencjału. Rozważmy nieskończoną studnie kwantową w modelu Bohra-Sommerfelda, tzn. po prostu elektron odbijający się w tę i z powrotem od doskonale twardych ścian oddalonych od siebie o   który podobnie jak w modelu Bohra atomu wodoru może poruszać się jedynie po dozwolonych trajektoriach klasycznych, tzn. tu po odcinku, ale z różnymi prędkościami. Elektron taki jako naelektryzowany ładunkiem   poruszając się jest więc także (zmiennym) prądem elektrycznym i umożliwia zdefiniowanie oporu studni.

Ponieważ trajektoria zamknięta ruchu elektronu to jego przelot przez studnie w tę i z powrotem z pędem o takiej samej wartości bezwzględnej, lecz jedynie zmieniającym kierunek wracając od jednej do tej samej ściany poprzez odbicie od drugiej warunki kwantyzacji Bohra-Sommerfelda

 

redukują się do

 

dając dozwolone kwantowe wartości prędkości

 

i poprawne dokładne energie kwantowe dla nieskoczończonej kwantowej studni potencjału

 

Definiując napięcie pod którym jest n-ta trajektoria elektronu jako stosunek jego energii do ładunku

 

oraz w naturalny sposób prąd elektryczny jako

 

gdzie:   jest okresem n-tej trajektorii (czasem powrotu elektronu od jednej do tej samej ściany)

 

otrzymujemy kwantyzacje oporu elektrycznego ze stałą von Klitzinga (klizingiem) (tu dokładnie z jej połową, a więc tu efekt ułamkowy)

 

W odróżnieniu od oryginalnego kwantowego efektu Halla otrzymujemy tu więc kwantyzacje oporu proporcjonalną, a nie odwrotnie proporcjonalną do liczby kwantowej  

Zobacz teżEdytuj

Linki zewnętrzneEdytuj