Twierdzenie Plancherela

Twierdzenie Plancherela – twierdzenie z zakresu analizy harmonicznej, udowodnione przez Michela Plancherela w 1910 roku[1]. Głosi ono, że istnieje odwzorowanie o następujących własnościach:

  • dla jest
  • dla dowolnej jest
  • jest izometrią przestrzeni na siebie
  • jeśli oraz

to oraz przy

Przekształcenie określa transformatę Fouriera (Fouriera-Plancherela) na przestrzeni Na podprzestrzeni jest to klasyczna transformata Fouriera funkcji całkowalnej. Ostatni podpunkt wskazuje metodę rozszerzenia transformaty i transformaty odwrotnej na całą

Zobacz teżEdytuj

PrzypisyEdytuj

  1. Plancherel, Michel (1910) „Contribution a l’etude de la representation d’une fonction arbitraire par les integrales définies,” Rendiconti del Circolo Matematico di Palermo, vol. 30, s. 298–335.

BibliografiaEdytuj