Liczba Poissona

stosunek odkształcenia poprzecznego do odkształcenia podłużnego przy osiowym stanie naprężenia
Przybliżone wartości współczynnika Poissona dla różnych materiałów
Materiał Współczynnik Poissona
Guma ~0,50
Magnez 0,35
Tytan 0,34
Miedź 0,33
Aluminium 0,33
Glina 0,30–0,45
Stal nierdzewna 0,30–0,31
Stal 0,27–0,30
Żeliwo 0,21–0,26
Piasek 0,20–0,45
Beton 0,20
Szkło 0,18–0,3
Korek ~0,00

Współczynnik (liczba) Poissona – stosunek odkształcenia poprzecznego do odkształcenia podłużnego[1] przy jednoosiowym stanie naprężenia.

Sześcian o krawędziach długości wykonany z izotropowego liniowo sprężystego materiału, o współczynniku Poissona równym 0,5, poddany obciążeniu w kierunku Zielona kostka pokazuje stan początkowy, czerwona rozciągnięta pod wpływem przyrostu obciążenia na kierunku -owym o długość oraz równocześnie skrócona na kierunku i o długość

Jednoosiowy stan naprężenia to stan reprezentowany tylko przez jedno niezerowe naprężenie główne.

Współczynnik Poissona jest wyrażony bezjednostkowo - znaczy to, że jest wielkością bezwymiarową, nie określa sprężystości materiału, a jedynie sposób, w jaki się on odkształca.

Jeżeli w przypadku materiału izotropowego w rozpatrywanym punkcie ciała wyróżnimy kierunek i jeżeli w tym punkcie jedynie naprężenie (zaś pozostałe składowe naprężenia są równe zero), to współczynnik Poissona:

gdzie:

odkształcenie,
– dowolny kierunek prostopadły do
Poisson Coefficient.svg

Jeżeli pręt o średnicy (lub dowolnym innym stałym przekroju) i długości zostanie poddany jednoosiowemu rozciąganiu tak, że wydłuży się o to jego średnica zmieni się (zmniejszy się, stąd dla uniknięcia wartości ujemnych współczynnika znak minus we wzorze) o:

Wzór ten jest słuszny w przypadku małych odkształceń. Jeżeli odkształcenia są znaczne (patrz: duże odkształcenia), to dokładniejsze wyniki daje wzór (w założeniu ):

Powyższe wzory są jednym ze sposobów bezpośredniego wyznaczenia współczynnika Poissona w statycznej próbie rozciągania, chociaż ze względu na niewielkie odkształcenia jest to metoda niedokładna.

Ze względu na zależność opisującą stosunek współczynnika Poissona do modułu Younga i modułu Helmholtza można określić, że[2][3]:

W przypadku dwuwymiarowej sprężystości relacja ta przybiera postać:

Nazwa współczynnika pochodzi od nazwiska Siméon Denis Poissona (1781–1840), francuskiego matematyka.

Metodę określania współczynnika Poissona przedstawia norma ASTM E-132.

Współczynnik Poissona można również wyznaczyć, przekształcając równianie wiążące ten współczynnik z modułem Younga

gdzie:

moduł Younga,
moduł Kirchhoffa,
– Liczba Poissona.

Po przekształceniach uzyskujemy równanie:

Rozciąganie kostki z materiału o ujemnym współczynniku Poissona. Przykład auksetyku.

Zobacz teżEdytuj

PrzypisyEdytuj

  1. Poissona współczynnik, [w:] Encyklopedia PWN [online] [dostęp 2021-07-29].
  2. Finding Young’s Modulus and Poisson’s Ratio (ang.). [dostęp 2010-05-19].
  3. Lew Landau, Jewgienij Lifszyc: Teoria sprężystości. Warszawa: Wydawnictwo Naukowe PWN, 2009, seria: Fizyka Teoretyczna.