Twierdzenie Kołmogorowa o normowaniu przestrzeni liniowo-topologicznych

Twierdzenie Kołmogorowa o normowaniu przestrzeni liniowo-topologicznych - twierdzenie charakteryzujące te przestrzenie liniowo-topologiczne, w których da się wprowadzić normę tak by oryginalna topologia przestrzeni pokrywała się z topologią wprowadzoną przez normę (tj. przestrzenie normowalne). Twierdzenie udowodnione w 1934 przez A. N. Kołmogorowa[1].

TwierdzenieEdytuj

Niech X będzie przestrzenią liniowo-topologiczną Hausdorffa. Wówczas X jest normowalna wtedy i tylko wtedy, gdy istnieje w X ograniczone i wypukłe otoczenie zera.

PrzypisyEdytuj

  1. A. N. Kolmogorov, Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes, Studia Math. 5 (1934), 29–33; angielskie tłumaczenie: V.M. Tikhomirov (Ed.), Selected Works of A.N. Kolmogorov. Vol. I: Mathematics and Mechanics,, Kluwer, Dordrecht–Boston–London, 1991, ss. 183–186.

BibliografiaEdytuj