Operatory kreacji i anihilacji

Operatory kreacji i anihilacjioperatory liniowe wprowadzone przez Diraca do znalezienia rozwiązań równania Schrödingera dla oscylatora harmonicznego. Operatory te działają na stany własne operatora Hamiltona oscylatora w ten sposób, że operator kreacji dodaje jeden kwant energii do układu drgającego, a operator anihilacji odejmuje jeden kwant; jeżeli zaś operator anihilacji działa na najniższy stan, w jakim może być oscylator, to w wyniku daje 0.

Proste uogólnienie tych operatorów pozwoliło na przedstawienie pól bozonowych i fermionowych jako stanów kwantowych (w tzw. procesie drugiej kwantyzacji), gdzie operatory kreacji i anihilacji działają w przestrzeni Foka (Focka) na stany wielocząstkowe, zwiększając lub zmniejszając liczby cząstek pola. Dzięki temu udało się opisać procesy kreacji i anihilacji cząstek (np. proces emisji promieniowania przez atomy, proces anihilacji pary elektron – pozyton), co było nie do opisu w tzw. mechanice kwantowej pierwszej kwantyzacji (opartej na równaniach Schrödingera, Pauliego czy Diraca), gdzie liczby cząstek były stałe.

Przykładem jest kwantyzacja pola elektromagnetycznego – kwantami tego pola są fotony, które są bozonami.

Operatory kreacji i anihilacji oscylatora harmonicznegoEdytuj

Operatory kreacji i anihilacji pojawiły się w fizyce z chwilą prób rozwiązania metodą algebraiczną zagadnienia ruchu oscylatora kwantowego.

Definicja operatorów kreacji i anihilacjiEdytuj

Operatory kreacji i anihilacji pojedynczego kwantu (pola kwantowego lub układu drgającego, obracającego się itp.) definiujemy następująco:

 
 
  dla  

gdzie:

  – operator kreacji,
  – operator anihilacji.

PrzykładEdytuj

  1. Operator kreacji   transformuje
    stan   oscylatora o energii  
    do stanu   o energii  
    czyli dodaje 1 kwant energii.
  2. Operator anihilacji   transformuje
    stan   o energii  
    do stanu   o energii  
    czyli
    • odejmuje 1 kwant energii
    • lub zeruje funkcję falową, gdy działa na najniższy możliwy stan – stan  

Wyrażenie dowolnego stanu przez operator kreacjiEdytuj

Dowolny stan   pola kwantowego, zawierający n kwantów (lub stan układu oscylującego, obracającego się itp., zawierający n kwantów) można wyrazić za pomocą  -krotnego działania operatora kreacji na najniższy stan oscylatora  

 

W przypadku pól kwantowych stan   nazywa się stanem próżni. Operatory kreacji i anihilacji wykorzystuje się w przedstawieniu stanów pół kwantowych (patrz drugi rozdział).

Działanie operatorów na stany sprzężoneEdytuj

 
 

Reguły komutacjiEdytuj

 
 

gdzie:

 komutator.

Reprezentacja macierzowaEdytuj

Stany   są wzajemnie ortogonalne – można wybrać je na bazę przestrzeni Hilberta. Bazę tą nazywa się bazą liczby cząstek.

Operatory kreacji i anihilacji w tej bazie mają następujące reprezentacje:

 

oraz

 

Elementy   macierzy operatora   wyznacza się obliczając działania operatora na stany bazowe, tj.

 

i podobnie dla operatora  

 

Dowód.

1) Dla operatora kreacji mamy obliczamy:

 

Wyrazy niezerowe otrzymamy tylko gdy   czyli niezerowe są wyrazy

 

Czyli różne od zera są wyrazy:   cnd.

2) Analogicznie dowodzi się dla operatora anihilacji.

Operatory kreacji i anihilacji w kwantowaniu pólEdytuj

W klasycznej fizyce odróżnia się ciała materialne i pola fizyczne. Typowym przykładem pola jest pole elektromagnetyczne (lub pole grawitacyjne, jądrowe itp.). W kwantowej teorii pola wszystkie cząstki traktuje się jako pewne pola fizyczne, podobnie jak pole elektromagnetyczne czy grawitacyjne. Różnica jest taka, że w klasycznej fizyce uznawano, że pola mogą przyjmować dowolne energie. Eksperymenty pokazały jednak, że każda monochromatyczna fala elektromagnetyczna jest skwantowane, tzn. może mieć tylko skokowe wartości energii (np. zjawisko fotoelektryczne). Co do pola grawitacyjnego nie ma jasności na temat jego kwantowania. Podobnie, układ fizyczny złożony z tego samego rodzaju cząstek (np. elektronów, protonów) może występować wyłącznie w postaci zbioru zawierającego całkowitą nieujemną liczbę cząstek.

W opisie teoretycznym uwzględnia się tę własność, dokonując tzw. drugiej kwantyzacji. Operatory kreacji i anihilacji pozwalają przedstawić pola fizyczne w postaci superpozycji stanów o różnych liczbach cząstek, działając w przestrzeni Foka (Focka) na stany wielocząstkowe:

  •   – operator kreacji transformuje stany z przestrzeni   cząstkowej do   cząstkowej,
  •   – operator anihilacji transformuje stany z przestrzeni   cząstkowej do   cząstkowej lub zeruje funkcję falową – jeśli operator ten działał na stan próżni,

przy czym odróżnia się operatory bozonowe – działają na bozony oraz operatory fermionowe – działają na fermiony.

Reguły komutacyjneEdytuj

Istnieją dwie reguły definiujące operatory kreacji i anihilacji.

Reguła antykomutacyjna Jordana-Wignera definiująca operatory dla fermionów:

 
 

gdzie:

  – tzw. antykomutator.

Reguła komutacyjna Bosego definiująca operatory dla bozonów:

 
 

Wyrażenie dowolnego stanu pola przez operator kreacjiEdytuj

Definiując zbiór operatorów kreacji i anihilacji, wraz z odpowiednimi relacjami komutacji (antykomutacji) i stanem próżni, otrzymujemy zbiór stanów wielocząstkowych. Stan o określonej liczbie cząstek   otrzymuje się jako wynik działania operatorów kreacji   na stan próżni   w ten sposób że np.

  itd.,

przy czym jeżeli   oznacza stan bozonowy, to w powyższym wzorze występuje operator kreujący bozony, gdy zaś jest to stan fermionowy – to mamy tam operator kreujący fermiony. Pełny obraz, jaki daje kwantowa teoria pola, uwzględnia dodatkowo, że operatory pola są scharakteryzowane przez inne liczby kwantowe, np. przez spin, z jakim kreują cząstki.

Np. dla opisu stanu elektronu w atomie wodoru mamy zespół 4 liczb kwantowych, czyli

 

gdzie:   – główna liczba kwantowa,   – liczba kwantowa orbitalnego momentu pędu,   – liczba kwantowa rzutu orbitalnego momentu pędu na wybrany kierunek,   – liczba kwantowa rzutu spinowego momentu pędu na wybrany kierunek (liczba spinowa dla elektronów wynosi zawsze  ). Dlatego np. operator kreacji elektronu w danym stanie w atomie wodoru ma postać

 

Elektron może być w superpozycji stanów – wtedy operator kreujący taki stan jest kombinacją liniową operatorów  

Operator liczby cząstek układu kwantowegoEdytuj

Operatory kreacji i anihilacji zmieniają liczbę cząstek układu kwantowego. Operator całkowitej liczby cząstek ma postać

 

gdzie indeksy   reprezentują liczby kwantowe. Indeksy te odróżniają różne możliwe stany układu, zgdnie z tym, co opisano wyżej.

Inne operatoryEdytuj


Zobacz teżEdytuj

BibliografiaEdytuj

  • R.L. Liboff: Wstęp do mechaniki kwantowej. Warszawa: PWN, 1987, s. 164–180.
  • Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloë, Quantum Mechanics, Vol. I, 1991. Wiley, New York, ​ISBN 0-471-16433-X​, s. 489–499.