System LTI

System LTI, czyli system liniowy niezmienniczy w czasiesystem, który jest liniowy ze względu na wszystkie swoje argumenty (czyli elementy) w dowolnej chwili czasu.

WstępEdytuj

Interpretacja pojęcia sygnałuEdytuj

Sygnał to w najprostszym rozumieniu zapis pewnej wielkości fizycznej. Jest on zależny od czasu, ponieważ z czasem badane zjawisko może ulegać różnym, badanym zmianom. Można wyobrażać sobie sygnał przykładowo jako pewnego rodzaju funkcję postaci   Jednak w analizie danych nie dysponuje się wartościami takiej funkcji dla każdego i dowolnego czasu   Fizycznie można bowiem zmierzyć pewną wielkość   tylko dla skończonej liczby czasów – przykładowo dla   s zmierzono   dla   otrzymano   itd. Nie można jednak zmierzyć wartości   dla każdej wartości   gdyż wartości   jest nieskończenie wiele.

Dlatego też zamiast funkcji określającej sygnał w sposób ciągły   korzysta się z wartości dyskretnych:   gdzie   Ich liczba w danym doświadczeniu jest skończona, przykładowo dla 3 s zapisu pewnego dźwięku, który w przyrodzie jest ciągły (gdyż występuje w dowolnej chwili czasu) można posiadać różne wartości   natężenia dźwięku dla   = 0 sekundy,   = 1 sekundy,   = 2 sekundy i   = 3 sekundy. Zapisuje się to jako   skąd       i  

Możliwe jest zatem wykonywanie stosownych, interesujących z perspektywy celu badań, operacji, jak dodawanie tych wartości itp.

Zapis   (lub  ) rozumie się po prostu jako sygnał.

Interpretacja pojęcia systemuEdytuj

System w tym wypadku należy rozumieć jako dowolną fizyczną całość, która fizycznie modyfikuje sygnał w pewien sposób. Przykładem takiego systemu może być filtr. Istotę systemu można przedstawić schematycznie:

 

gdzie   to nowe, zmienione systemem, wartości pewnego zjawiska. W ogólnym wypadku,   i   to wektory, a system jest operatorem (czyli pewną macierzą).

Formalnie stosuje się jednak zapis z użyciem symboli:

 

gdzie   oznacza system.

Pojęcia opisujące systemEdytuj

Liniowość systemuEdytuj

Niech dany będzie sygnał postaci   gdzie   i   to pewne stałe wielkości (liczby, których może być więcej), wynikające przykładowo z charakteru przeprowadzanego doświadczenia, a   i   to pewne sygnały (których również może być więcej). Sygnał taki jest zatem sumą dwóch sygnałów o odpowiednich liczbowych współczynnikach.

System, zapisany jak powyżej, uznaje się za liniowy, jeżeli zmodyfikuje on sygnał typu   w następujący sposób:

 

lub analogicznie. Powyższe przekształcenie stanowi definicję liniowości.

Sekwencja jednostkowaEdytuj

Na potrzeby dalszej analizy, zdefiniowano sekwencję jednostkową o symbolu δ[n], będącą sygnałem określonym w następujący sposób:

 

Jest to zatem sygnał, którego wszystkie elementy mają wartość 0, poza pierwszym. Innymi słowy δ[n] = [1, 0, 0, 0, 0, 0, 0,...].

Z powyższej definicji, sygnał δ[n – k] ma postać

 

Jest to zatem sygnał, którego wszystkie elementy mają wartość 0, poza  -tym (  jest liczbą całkowitą).

Można zauważyć, że za pomocą sekwencji jednostkowej można zapisać dowolny sygnał   jako pewną sumę sekwencji jednostkowych:

 

gdzie   – liczba elementów sygnału. Przykładowo:

 
 
 

Powyższe przekształcenia wynikają z własności wektorów.

System LTIEdytuj

Sygnał   opisany za pomocą sekwencji jednostkowej można zmodyfikować systemem, otrzymując inny sygnał   będący odpowiedzią systemu:

 

Jeżeli system jest liniowy, to

 

Jeżeli system jest również niezmienniczy w czasie, czyli jego parametry są stale takie same, to odpowiedź systemu na sekwencję jednostkową również będzie wciąż taka sama, jako że sekwencja jednostkowa z definicji nie ulega zmianom. Fakt ten uwzględnia się w zapisie

 

Stąd ostatecznie

 

System liniowy i niezmienniczy w czasie nazwano systemem LTI (ang. linear time-invariant). Znając odpowiedź pewnego systemu, będącego systemem LTI, na sekwencję jednostkową (pik), można zatem obliczyć jego odpowiedź na dowolny inny, znany sygnał  

Jednocześnie, powyższy zapis jest definicją splotu:

 

Zobacz teżEdytuj