Twierdzenie Gleasona
Twierdzenie Gleasona – twierdzenie dotyczące przestrzeni Stone’a, którego nazwa pochodzi o nazwiska matematyka, Andrew Gleasona.
Twierdzenie
edytujJeżeli i są przestrzeniami Stone’a, przy czym jest ekstremalnie niespójna, to dla każdej funkcji ciągłej oraz dla każdej ciągłej suriekcji istnieje taka funkcja ciągła że
Szkic dowodu
edytujNależy zauważyć, że zbiór
jest domknięty w a więc zwarty (jako domknięta podprzestrzeń przestrzeni zwartej Hausdorffa) oraz jest przestrzenią Stone’a (jest domkniętą podprzestrzenią produktu przestrzeni Stone’a, a produkt przestrzeni Stone’a jest przestrzenią Stone’a). Niech oraz gdzie pr oznaczają rzutowania przestrzeni na odpowiednie podprzestrzenie. Z określenia zbioru S wynika, że
Funkcja jest suriekcją więc również. Można uzasadnić, że istnieje taki zbiór domknięty że odwzorowanie jest nieprzywiedlne oraz Każde odwzorowanie nieprzywiedlne z przestrzeni Stone’a o wartościach w przestrzeni ekstremalnie niespójnej jest homeomorfizmem, a więc odwzorowanie
realizuje tezę twierdzenia.
Zobacz też
edytujBibliografia
edytuj- Aleksander Błaszczyk, Sławomir Turek: Wstęp do teorii mnogości. PWN, Warszawa, 2007, s. 289–290.