Otwórz menu główne

1729 (jeden tysiąc siedemset dwadzieścia dziewięć) – liczba naturalna następująca po 1728 i poprzedzająca 1730.

1729
faktoryzacja
dzielniki 1, 7, 13, 19, 91, 133, 247, 1729
zapis rzymski MDCCXXIX
dwójkowo 11011000001
ósemkowo 3301
szesnastkowo 6C1
Wartości funkcji teorioliczbowych
φ(1729) = 1296 τ(1729) = 8
σ(1729) = 2240 π(1729) = 269
μ(1729) = -1 M(1729) = -8

Spis treści

W matematyceEdytuj

W nauceEdytuj

W kalendarzuEdytuj

Zobacz też co wydarzyło się w roku 1729, oraz w roku 1729 p.n.e..

Liczba Hardy'ego-RamanujanaEdytuj

Kiedy angielski matematyk Godfrey Hardy odwiedził chorego hinduskiego matematyka Srinivasa Ramanujana, zauważył, że taksówka, którą do niego jechał miała raczej nudny numer boczny 1729. Ramanujan odpowiedział, że wręcz przeciwnie liczba 1729 jest bardzo ciekawą liczbą, ponieważ jest najmniejsza liczba, którą można wyrazić sumą dwóch sześcianów na dwa różne sposoby (123 + 13 = 103 + 93 = 1729). W związku z tym zdarzeniem liczba ta, oraz pozostałe liczby spełniające tą własność noszą nazwę liczb Hardy'ego-Ramanujana lub liczb taksówkowych. Własność ta wcześniej została zauważona przez francuskiego matematyka Bernarda Frénicle w 1729 w odpowiedzi na wyzwanie Eulera[9].

Zobacz teżEdytuj

PrzypisyEdytuj

  1. Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  2. Niven (or Harshad) numbers: numbers that are divisible by the sum of their digits. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  3. Carmichael numbers: composite numbers n such that a^(n-1) == 1 (mod n) for every a coprime to n. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  4. Proth numbers: of the form k*2^m + 1 for k odd, m >= 1 and 2^m > k. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  5. Zeisel numbers. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  6. Sphenic numbers: products of 3 distinct primes. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  7. Squarefree numbers: numbers that are not divisible by a square greater than 1. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  8. Numbers n such that n = digit_sum(n)*R(digit_sum(n)) where digit_sum is the sum of digits and R is the digit reversal. (ang.). The On-Line Encyclopedia of Integer Sequences. [dostęp 2017-03-18].
  9. David G. Wells: The Penguin Book of Curious and Interesting Numbers: Revised Edition. Penguin Books, 1998, seria: Penguin Press Science. ISBN 978-01-4026-149-3.

BibliografiaEdytuj