Krzywa Lissajous

Krzywa Lissajous (wym. lisaʒu) bądź Bowditchakrzywa parametryczna wykreślona przez punkt materialny wykonujący drgania harmoniczne w dwóch wzajemnie prostopadłych kierunkach.

Doświadczenie Lissajous z kamertonami

Dana jest wzorem:

Nazwy pochodzą od nazwisk Nathaniela Bowditcha, który opisał rodzinę tych krzywych w 1799, oraz Jules’a Antoine’a Lissajous, który badał je używając do tego drgających kamertonów z umocowanymi do nich zwierciadełkami. Krzywe te nazywane są też figurami Lissajous.

RodzajeEdytuj

Kształt krzywych jest szczególnie uzależniony od współczynnika   Dla współczynnika równego 1, krzywa jest elipsą, ze specjalnymi przypadkami okrąg:

  (zob. pi i radian),

oraz odcinek:

 

Inne wartości współczynnika dają bardziej złożone krzywe, które są zamknięte, tylko gdy   jest liczbą wymierną.

WystępowanieEdytuj

Jedną z metod uzyskiwania krzywych Lissajous jest podanie na wejścia oscyloskopu, pracującego w trybie   dwóch sygnałów sinusoidalnych o częstotliwościach pozostających w stosunku   Ciekawy efekt uzyskuje się również, gdy stosunek tych częstotliwości jest minimalnie różny od ilorazu dwóch niskich liczb naturalnych: dzięki płynnej zmianie fazy (parametru  ) uzyskuje się iluzję trójwymiarowego obrotu krzywej. W najprostszym przypadku, gdy   uzyskuje się efekt „obracającej się monety”.

Inną metodą jest wykorzystanie wahadła o specjalnej konstrukcji. Wahadło takie posiada dwie różne efektywne długości (w prostopadłych do siebie płaszczyznach), więc generuje drgania złożone[1][2].

Krzywe Lissajous są także czasem wykorzystywane w projektach graficznych jako element logo (np. w Australian Broadcasting Corporation).

PrzykładyEdytuj

Poniżej zamieszczono przykłady krzywych[3] Lissajous o parametrach     – nieparzyste,   – parzyste,  

Zobacz teżEdytuj

PrzypisyEdytuj

  1. Marek Ples. Krzywe Lissajous – piękno drgań. „Młody Technik”. 6 (2015), s. 76–77. Warszawa: Wydawnictwo AVT. 
  2. Jan Gaj: Laboratorium Fizyczne w domu. Warszawa: Wydawnictwa Naukowo-Techniczne, 1985.
  3. Л.Г. Лойцянский, А.И. Лурье, Курс теореитической механики, Гос. Издат. Технико-теоретической литературы, Москва 1954

BibliografiaEdytuj

  • Josep Sales, Francesc Banyuls: Niebezpieczne krzywe. Elipsy, hiperbole i inne geometryczne cuda. Przełożyła Hanna Jezierska. Barcelona: RBA, 2012, s. 109–112, seria: Świar jest matematyczny. ISBN 978-84-473-7545-5.

Linki zewnętrzneEdytuj