Otwórz menu główne
Ten artykuł dotyczy części prostej. Zobacz też: Inne znaczenia.
Prosta, półprosta i odcinek. Dla prostej i półprostej widać tylko fragment mieszczący się na rysunku. Wypełnione kółeczka symbolizują punkty na końcach odcinka i na początku półprostej, które także do odcinka i półprostej należą.

Odcinek – część prostej zawarta pomiędzy dwoma jej punktami z tymi punktami włącznie. Odcinek w całości zawiera się wewnątrz tej prostej.

W przestrzeni trójwymiarowej z kartezjańskim układem współrzędnych odcinek o końcach jest zbiorem punktów opisanych układem równań

gdzie:

W przestrzeni jednowymiarowej (na osi liczbowej) definicja ta ogranicza się do pierwszej równości:

przy stając się równoważną definicji przedziału

W przestrzeni dwuwymiarowej powyższy układ sprowadza się do dwóch pierwszych równań. W przestrzeni o większej liczbie wymiarów należy dopisać kolejne równania.

Uogólnienie na przestrzenie wektoroweEdytuj

W dowolnej przestrzeni wektorowej odcinek   (tzn. odcinek o końcach   i   będących punktami tej przestrzeni) jest zbiorem punktów leżących „pomiędzy”   i   jako ich średnie ważone przy dowolnych nieujemnych wagach:

 

Dla przestrzeni z kartezjańskim układem współrzędnych definicja ta, poprzez rozpisanie warunków na poszczególne współrzędne, wprost sprowadza się do definicji podanej powyżej.

Uogólnienie na przestrzenie metryczneEdytuj

W przestrzeni metrycznej odcinek o końcach   i   można definiować jako zbiór punktów   tej przestrzeni leżących „pomiędzy”   i   jako spełniających warunek:

odległość od   do   równa jest sumie odległości od   do   i od   do  

Algebraicznie warunek ten wyraża się jako równość:

 

gdzie   jest odległością pomiędzy   i   według metryki obowiązującej w danej przestrzeni.

Zobacz teżEdytuj