Otwórz menu główne

Pierścień z jednoznacznością rozkładu

Pierścień z jednoznacznością rozkładu (pierścień Gaussa, UFD, od ang. unique factorization domain)pierścień przemienny, którego każdy element nieodwracalny może być przedstawiony jako iloczyn elementów pierwszych w jednoznaczny sposób, tzn. jednoznaczny co do permutacji czynników. Pierścienie te uogólniają pierścień liczb całkowitych w ten sposób, że spełniają one także tezę podstawowego twierdzenia arytmetyki.

Poniższy ciąg zawierań zbiorów obrazuje pewne szczególne przypadki pierścieni z jednoznacznością rozkładu:

pierścienie z jednoznacznością rozkładudziedziny ideałów głównychpierścienie euklidesoweciała

DefinicjaEdytuj

Dziedzina całkowitości   nazywana jest pierścieniem z jednoznacznością rozkładu wtedy i tylko wtedy, gdy

  • dla dowolnego niezerowego elementu nieodwracalnego   istnieją elementy nierozkładalne   takie, że  
  • jeżeli   gdzie wszystkie elementy   są nierozkładalne, to   i istnieje permutacja   taka, że   to znaczy elementy te są stowarzyszone.

WłasnościEdytuj

  • Jeżeli   jest pierścieniem z jednoznacznością rozkładu, to istnieje w nim największy wspólny dzielnik.
  • Twierdzenie Gaussa: Jeżeli   jest pierścieniem z jednoznacznością rozkładu, pierścień wielomianów   również jest pierścieniem z jednoznacznością rozkładu.
  • W pierścieniu z jednoznacznością rozkładu każdy element nierozkładalny jest pierwszy.

BibliografiaEdytuj