Rozwinięcie multipolowe

Rozwinięcie multipolowe – przedstawienie pola fizycznego, pochodzącego od źródeł zawartych w ograniczonym obszarze, w postaci szeregu potęg odwrotności odległości od punktu, w którym należy znaleźć potencjał. Taki opis jest często wykorzystywany dla potencjałów pól elektromagnetycznych[1] i grawitacyjnych. Jako że -ty wyraz rozwinięcia zanika z odległością od źródeł jak to dla wystarczająco dużego dominuje najniższy nieznikający wyraz rozwinięcia. Pierwszy wyraz rozwinięcia jest członem monopolowym, następny jest członem dipolowym, trzeci kwadrupolowym itd. W przypadku rozwinięcia we współrzędnych sferycznych, kolejne wyrazy opisują elementy geometrii pola o coraz mniejszej rozciągłości kątowej. Wyraz monopolowy ma symetrię sferyczną (nie zależy od współrzędnych kątowych), wyraz dipolowy zmienia znak na sferze przy przekraczaniu płaszczyzny symetrii pola.

Sformułowanie matematyczne edytuj

Przykład – pole elektrostatyczne edytuj

Ograniczony obszar   zawiera źródła pola – w elektrostatyce są to ładunki elektryczne – o gęstości   Potencjał pola elektrostatycznego w punkcie opisanym wektorem   odległym od obszaru   zawierającego źródła pola można wyrazić za pomocą szeregu Taylora:

 

gdzie   to przenikalność elektryczna, a wyrazy sumy, nazywane potencjałami multipolowymi wyrażają się przez:

 

Symbole   oraz   oznaczają współrzędne kartezjańskie odpowiednich wektorów, a   jest długością wektora   Niezależne od   wielkości określone wzorem:

 

nazywane są momentami multipolowymi rzędu   przykładowo moment multipolowy rzędu 1 nazywa się momentem dipolowym. W elektrostatyce potencjały multipolowe można interpretować jako potencjały pochodzące od szczególnych układów ładunków punktowych.

Wyrażenie przez harmoniki sferyczne edytuj

Potencjał   pola w punkcie opisanym współrzędnymi sferycznymi   odległym od ograniczonego obszaru, zawierającego źródła pola, można wyrazić za pomocą sumy harmonik sferycznych mnożonych przez współczynniki   zależne od promienia  

 

gdzie   to stałe współczynniki.

Monopol edytuj

 
Pole monopola (tu: punktowego ładunku dodatniego)

Pole monopola jest sferycznie symetryczne. Taki charakter ma np. pole elektryczne pojedynczego ładunku elektrycznego lub pole grawitacyjne wytwarzane przez punkt materialny. W elektrostatyce moment monopolowy jest równy całkowitemu ładunkowi układu:

 

Prawo Gaussa dla magnetyzmu wyraża założenie, że pole magnetyczne nie ma źródeł, tj. nie istnieją monopole magnetyczne, oddzielne bieguny „północny” i „południowy”. Takie cząstki nigdy nie zostały zaobserwowane, chociaż pojawiają się w niektórych teoriach fizycznych (teoriach wielkiej unifikacji).

Dipol edytuj

 
Pole dipolowe obserwowane w płaszczyźnie dipola, daleko od źródeł pola
Osobny artykuł: dipol.

Pole dipolowe ma symetrię osiową. Najprostsze pole magnetyczne, np. wytwarzane przez małą, symetryczną pętlę z prądem, ma charakter dipolowy. Ziemskie pole magnetyczne generalnie ma charakter dipolowy (oprócz okresów przebiegunowania Ziemi), ale występujące lokalnie anomalie magnetyczne wskazują, że wyższe składowe pola też nie są zerowe.

Elektryczny moment dipolowy ma składowe określone wzorem:

 

zatem w przypadku układu   ładunków punktowych wyraża się wzorem:

 

Kwadrupol edytuj

 
Pole kwadrupolowe obserwowane w płaszczyźnie kwadrupola, daleko od źródeł pola
Osobny artykuł: kwadrupol.

Pole kwadrupola jest symetryczne względem płaszczyzny, w której znajdują się źródła pola. Przykładem kwadrupola jest układ cewek wykorzystywany jako analizator masy, oraz do kolimacji wiązek cząstek naładowanych.

Moment kwadrupolowy rozkładu ładunków elektrycznych wyraża się wzorem:

 

wielkość ta jest tensorem symetrycznym.

Przypisy edytuj

  1. Multipolowe momenty, [w:] Encyklopedia PWN [dostęp 2021-07-22].

Bibliografia edytuj