Paradoks dni urodzin

(Przekierowano z Paradoks dnia urodzin)

Paradoks dni urodzin[1], paradoks urodzin[2]paradoks związany z rozwiązaniem poniższego zadania z rachunku prawdopodobieństwa[1]:

Prawdopodobieństwo, że dwie spośród osób obchodzą urodziny tego samego dnia.
Jak liczna musi być grupa osób, aby prawdopodobieństwo znalezienia w niej dwóch osób obchodzących urodziny tego samego dnia było równe co najmniej 1/2?

Zakłada się zwykle, że dni urodzin to liczby wybrane z rozkładem jednostajnym ze zbioru co nie odbiega znacząco od rzeczywistości. W szczególności w rozwiązaniu problemu nie uwzględnia się lat przestępnych[1].

Według Iana Stewarta, kiedy grupa badaczy zadała to pytanie studentom, mediana udzielonych odpowiedzi wyniosła 385[3]. Tymczasem już przy 366 osobach zasada szufladkowa Dirichleta gwarantuje, że pewne dwie z nich urodziły się tego samego dnia w roku. Poprawną odpowiedzią jest jednak zaskakująco niewielka liczba 23 osób[1][3], co uzasadnia użycie terminu „paradoks”[1].

Autorstwo problemu przypisuje się Haroldowi Davenportowi[4], który miał wymyślić go około 1927 roku[5]. Davenport wyrzeka się jednak autorstwa[4].

Rozwiązanie problemu edytuj

Prawdopodobieństwo zdarzenia przeciwnego do rozpatrywanego, czyli tego, że każda z osób ma inny dzień urodzin, jest przy   osobach równe

 .

Rozwiązanie problemu równoważne jest ze znalezieniem najmniejszego takiego   że   Ponieważ ciąg   jest nierosnący (co nietrudno zauważyć), wystarczy bezpośrednio obliczyć przy pomocy komputera, że

 ,

by dojść do prawidłowej odpowiedzi[1].

Aby wykazać, że wystarczą 23 osoby (choć już bez dowodu, że jest to najmniejsza taka liczba), można posłużyć się pewnymi przybliżeniami. Dla każdej liczby rzeczywistej   prawdziwa jest nierówność

 ,

przy czym   jest podstawą logarytmu naturalnego. Zatem

 .

Aby prawa strona powyższej nierówności była nie większa od   musi zachodzić

 .

Najmniejszym dodatnim rozwiązaniem tej nierówności jest

 ,

co jest oczywiście mniejsze od 23[1].

Uogólnienia i powiązane problemy edytuj

Inna liczba dni w roku edytuj

Przy założeniu, że rok ma   dni, rozwiązanie problemu dni urodzin równe jest w przybliżeniu[1]

 .

Dla przykładu można rozważyć wspomniany problem dla osób urodzonych na innych planetach Układu Słonecznego[1]:

Problem dni urodzin na różnych planetach
Nazwa planety Czas obiegu wokół Słońca (zaokrąglony) Minimalna liczność grupy osób
Merkury 88 dni 12
Wenus 225 dni 18
Ziemia 365 dni 23
Mars 687 dni 32
Jowisz 4 333 dni 78
Saturn 10 756 dni 123
Uran 30 708 dni 207
Neptun 60 223 dni 290

Ustalony dzień urodzin edytuj

Problem dni urodzin można zmodyfikować, przyjmując, że przed wykonaniem doświadczenia została wybrana pewna data. Dla ustalenia uwagi, niech będzie to data urodzin przeprowadzającego eksperyment. Należy wówczas znaleźć odpowiedź na pytanie[1]:

Jak liczna musi być grupa osób, aby prawdopodobieństwo znalezienia w niej osoby urodzonej tego samego dnia co eksperymentator było równe co najmniej 1/2?

Okazuje się, że potrzeba aż 253 osób. Przy ogólniejszym założeniu, że w roku jest   dni, odpowiedź na powyższe pytanie jest równa w przybliżeniu[1]

 .

Związek z kryptografią edytuj

Zobacz też: Atak urodzinowy.

Paradoks dni urodzin ma znaczenie w kryptografii i jest podstawą działania tzw. ataku urodzinowego. Niech dana będzie funkcja skrótu   która zwraca kod o   bitach, czyli daje   możliwych odpowiedzi (jest to moc jej przeciwdziedziny). Jej jakość można ocenić, badając jej jądro, a więc jej kolizje (kolizję tworzą każde dwie znane wiadomości   i   o których wiadomo, że  ).

Każdy kwantyl rozkładu liczby prób   potrzebnych do znalezienia kolizji wśród   kodów, spełnia zależność (5), gdzie   to rząd kwantyla. Średni czas łamania funkcji skrótu (tj. znalezienia kolizji) rośnie więc w przybliżeniu proporcjonalnie do pierwiastka liczby wszystkich możliwych odpowiedzi tej funkcji.

Przypisy edytuj

  1. a b c d e f g h i j k Tomasz Nikodem, Paradoks dni urodzin i pokrewne, czyli o pewnych zagadnieniach związanych z rozmieszczeniem kul w komórkach, „Delta” (4), Uniwersytet Warszawski, 2010, s. 1-2, ISSN 0137-3005 [dostęp 2024-05-02] (pol.).
  2. Matematyka dyskretna: wykłady z przykładami w języku Python, Sułkowice: Wojciech Broniowski, 2021, s. 79, ISBN 978-83-962099-1-7 (pol.).
  3. a b Ian Stewart, What a Coincidence!, „Scientific American”, 278 (6), 1998, s. 95–96, DOI10.1038/scientificamerican0698-95, ISSN 0036-8733 [dostęp 2024-05-02] (ang.).
  4. a b Isidore Jacob Good, Probability and the weighing of evidence, Londyn: Griffin, 1950, s. 38 [dostęp 2024-05-02] (ang.).
  5. David Singmaster, Sources in Recreational Mathematics: An Annotated Bibliography [online], Puzzle Museum, 2004, 8.B. BIRTHDAY PROBLEM [dostęp 2024-05-02] (ang.).