Łączność (matematyka)

własność działań

Łączność – jedna z własności działań dwuargumentowych, np. niektórych działań arytmetycznych. Jest fundamentalną własnością działań w podstawowych strukturach algebraicznych, od półgrup poprzez grupy aż po pierścienie i ciała.

DefinicjaEdytuj

Działanie dwuargumentowe   w zbiorze   jest łączne, jeżeli

 

Działanie, które nie jest łączne nazywa się niełącznym.

Łączność działania oznacza, że kolejność wykonywania obliczeń, tzn. rozstawienie nawiasów (zgodne ze składnią) nie ma wpływu na wynik.

Np. dla dowolnych czterech argumentów   zachodzą równości:

 
(1)

W efekcie umożliwia to notację beznawiasową, tzn. każde z powyższych pięciu wyrażeń można zapisać w postaci:

 

W wyrażeniu tym można więc wykonać działanie wskazane dowolny z trzech operatorów   na sąsiadujących z nim operandach.

Łączność w innych notacjachEdytuj

  • w notacji funkcyjnej:
 
 
 

Dla powyższych trzech notacji reguła pozwalająca pomijać nawiasy w wyrażeniach z działaniem łącznym nie ma zastosowania – w pierwszej nawiasy są nieusuwalne (jest to w istocie odmiana notacji przedrostkowej), w następnych dwóch nawiasy są całkowicie zbędne, należy jedynie odpowiednio zamieniać miejscami symbole działania i ich argumentów (zob. zapis działań dwuargumentowych).

Np. wyrażenia (1) w notacji przedrostkowej mają postać

 

Przykłady działań łącznychEdytuj

Działania niełączneEdytuj

W notacji wrostkowej dla działania niełącznego każde dwa argumenty (także te złożone) muszą być razem z operatorem objęte parą nawiasów (z wyjątkiem oczywiście najbardziej zewnętrznej pary argumentów). W notacji tej wszystkie nawiasy są niezbędne dla określenia kolejności wykonywanych działań. Przy większej ilości argumentów wyrażenia stają się przez to nieczytelne, np.:

 
(2)

W notacji przedrostkowej powyższe wyrażenie ma postać   w notacji przyrostkowej   W obu tych notacjach łączność lub niełączność działania nie ma oczywiście większego znaczenia, bowiem mimo braku nawiasów kolejność wykonywania działań jest „zakodowana” w wyrażeniu i jest możliwa do odtworzenia dzięki regułom tworzenia takich wyrażeń. Brak nawiasów nieco upraszcza zapis i przyczynia się do zwiększenia czytelności.

Notacja wrostkowa jednostronnie łącznaEdytuj

Ilość nawiasów notacji wrostkowej można zmniejszyć (a tym samym nieco uprościć zapis), wprowadzając notację z łącznością jednostronną. Oznacza to wybór jednej z dwóch możliwych kolejności usuwania nawiasów w wyrażeniu:

  • w lewostronnej łączności dopuszcza uproszczenie:   i zakazuje się usuwania nawiasów w wyrażeniu  
  • w prawostronnej łączności dopuszcza uproszczenie:   i zakazuje się usuwania nawiasów w wyrażeniu  

Oczywiście kolejność usuwania nawiasów w notacji z jednostronną łącznością jest równoznaczne z odwrotną kolejnością ich przywracania (nawiasy domyślne). Np. wyrażenie  

  • w notacji z łącznością lewostronną jest równoznaczne z wyrażeniem   czyli działania są wykonywane od lewej;
  • w notacji z łącznością prawostronną jest równoznaczne z wyrażeniem   czyli działania są wykonywane od prawej.

Stosując notację z lewostronną łącznością, wyrażenie (2) uprości się do postaci   z prawostronną do postaci  

Notacja z jednostronną łącznością jest więc odmianą notacji wrostkowej, w której niektóre nawiasy można pominąć. Dla każdego działania binarnego niełącznego wybór notacji z lewostronną lub prawostronną łącznością jest całkowicie dowolny i arbitralny, ale raz dokonany wybór dla danego działania musi być utrzymany dla zachowania jednoznaczności wartościowania wyrażenia. Inaczej mówiąc, działanie binarne niełączne nie jest ani lewostronnie, ani prawostronnie łączne. Stwierdzenie, że jakieś działanie jest lewo/prawostronnie łączne oznacza, że wobec tego działania stosuje się notację wrostkową odpowiednio z lewo/prawostronną łącznością.

Przykłady działań niełącznychEdytuj

Najczęściej stosowana jest notacja z lewostronną łącznością (np. niełączne działania arytmetyczne), co wiąże się z powszechną praktyką zapisywania (i odczytywania) od lewej tekstu lub wyrażeń arytmetycznych, z kolejnością wprowadzania od lewej wyrażeń do kalkulatorów itd.

Przykłady działań lewostronnie łącznychEdytuj

  • odejmowanie jest niełączne, bo np.  
dla odejmowania stosuje się notację lewostronnie łączną:
 
  • dzielenie jest niełączne, bo np.  
dla dzielenia stosuje się notację lewostronnie łączną:
 

Przykład działania prawostronnie łącznegoEdytuj

  • potęgowanie jest niełączne, bo np.  
dla potęgowania stosuje się notację prawostronnie łączną:
 

Inne przykłady działań niełącznychEdytuj

dla takich struktur jak np. oktawy Cayleya nie stosuje się żadnej notacji upraszczającej stosowanie nawiasów.
nawiasy komutatora   pełnią rolę operatora i są nieusuwalne

Zobacz teżEdytuj

BibliografiaEdytuj

  • Zdzisław Opial: Algebra wyższa. Warszawa: Państwowe Wydawnictwo Naukowe, 1976. str 34, 38