Ten artykuł dotyczy pojęcia matematycznego. Zobacz też: inne znaczenia słowa kula.

Kula – uogólnienie pojęcia koła na więcej wymiarów, zdefiniowane dla wszystkich przestrzeni metrycznych.

Definicja intuicyjna
Kula to zbiór punktów oddalonych nie bardziej niż pewna zadana odległość (promień kuli) od wybranego punktu (środek kuli).

Definicja formalnaEdytuj

Kula w danej przestrzeni metrycznej  zbiór elementów tej przestrzeni, zdefiniowany jako:

 

dla pewnych   które nazywamy odpowiednio środkiem i promieniem kuli.

W wielu źródłach[1][2][3] tak zdefiniowany zbiór nazywany jest kulą domkniętą dla odróżnienia od zbioru określanego jako kula otwarta i definiowanego następująco:

 

Informacja ogólnaEdytuj

 
Kula w przestrzeni euklidesowej

Intuicyjnie rozumiana kula – w przestrzeni euklidesowej trójwymiarowej dla metryki euklidesowej – jest to część przestrzeni, ograniczona sferą (sfera jest powierzchnią (brzegiem) kuli i również się w niej zawiera).

Taką kulę można wówczas opisać wzorem jako zbiór punktów, których współrzędne   spełniają nierówność:

 

gdzie   są współrzędnymi środka kuli, a   oznacza jej promień, natomiast w układzie współrzędnych sferycznych, dla środka znajdującego się w środku układu współrzędnych:

  dla  

W  -wymiarowej przestrzeni euklidesowej wzór ten ma natychmiastowe uogólnienie – kula o środku w punkcie   i promieniu   to zbiór punktów   których współrzędne spełniają nierówność:

 

Nietrudno zauważyć, że w dwuwymiarowej przestrzeni euklidesowej kulą jest koło, zaś w jednowymiarowej – odcinek.

 
Kula o środku   i promieniu   w metryce miejskiej na zbiorze  

Dla innych metryk kula wyglądać będzie inaczej. Przykładowo, w przestrzeni   o metryce miejskiej do kuli należą punkty, spełniające nierówność:

 

Natomiast w przestrzeni liter alfabetu łacińskiego, gdzie metryką byłaby odległość między poszczególnymi literami w szyku alfabetu, kulą jest np. zbiór   – promień tej kuli wynosi 1, a jej środkiem jest  

Związane pojęciaEdytuj

Cięciwa kuli to odcinek o końcach na brzegu kuli.

Średnica kuli to cięciwa przechodząca przez środek kuli. Termin ten oznacza również długość tej cięciwy – równą podwojonej długości promienia kuli. Termin ten został uogólniony na wszelkie zbiory w przestrzeni metrycznej (zobacz średnica zbioru).

Koło wielkie kuli to koło o promieniu tej kuli, o środku w środku kuli.

Wzory dla kuli w przestrzeni euklidesowejEdytuj

  • Objętość  -wymiarowej kuli (hiperkuli) o promieniu   dana jest wzorem  
  • „Pole”  -wymiarowe jej (hiper)powierzchni  
  • Objętość 3-wymiarowej kuli:  [4]
  • Pole powierzchni 3-wymiarowej kuli:  [4]

W powyższych wzorach   jest jedną z najsłynniejszych stałych matematycznych, szerzej opisaną w artykule Pi, zaś   oznacza funkcję gamma.

Uwaga: Brzegiem  -wymiarowej kuli jest  -wymiarowa sfera.

Uogólnienie topologiczneEdytuj

W topologii kulę definiujemy jako rozmaitość topologiczną, homeomorficzną z kulą geometryczną, zdefiniowaną jak powyżej.

Zobacz teżEdytuj

PrzypisyEdytuj

  1. Encyklopedia dla wszystkich. Matematyka. Warszawa: Wydawnictwa Naukowo-Techniczne, 2000, s. 149. ISBN 83-204-2334-1.
  2. Krzysztof Maurin: Analiza. Cz. I Elementy. Warszawa: Państwowe Wydawnictwo Naukowe, 1976, s. 34, 38, seria: Biblioteka Matematyczna Tom 38.
  3. Witold Kołodziej: Wybrane rozdziały analizy matematycznej. Warszawa: Państwowe Wydawnictwo Naukowe, 1982, s. 20, 21, seria: Biblioteka Matematyczna Tom 36.
  4. a b Wybrane wzory matematyczne, Warszawa: Centralna Komisja Egzaminacyjna, 2015, s. 14, ISBN 978-83-940902-1-0.