Zbiór otwarty

podstawowy element przestrzeni topologicznej

Zbiór otwarty – w danej przestrzeni topologicznej dowolny element rodziny

Dopełnienie zbioru otwartego nazywane jest zbiorem domkniętym. Istnieją zbiory, które są jednocześnie i otwarte i domknięte (tzw. zbiory domknięto-otwarte), np. zbiór pusty i cała przestrzeń

W topologii ogólnej funkcje, które zachowują otwartość zbioru poprzez przeciwobrazy, nazywane są funkcjami ciągłymi, natomiast funkcje, które zachowują otwartość poprzez obrazy, nazywane są odwzorowaniami otwartymi.

Własności zbiorów otwartych

edytuj

Poniższe trzy własności zbiorów otwartych są powtórzeniem aksjomatów przestrzeni topologicznej  [1]:

  1. Zbiór pusty i cała przestrzeń są zbiorami otwartymi (tj. należą do  ).
  2. Suma mnogościowa dowolnej rodziny zbiorów otwartych jest zbiorem otwartym (tj. należy do  ).
  3. Część wspólna skończonej rodziny zbiorów otwartych jest zbiorem otwartym (tj. należy do  ).

Nieskończony iloczyn zbiorów otwartych może nie być zbiorem otwartym. Np. na prostej rzeczywistej z topologią standardową jako zbiory otwarte przyjmuje się przedziały otwarte. Iloczyn nieskończony przedziałów otwartych może być przedziałem domkniętym:  

W klasie przestrzeni metrycznych zbiory otwarte można scharakteryzować jako te i tylko te, które wraz z każdym swoim punktem zawierają pewną kulę otwartą o środku w tym punkcie[2].

Niech   Jeśli dla każdego punktu   istnieje zbiór otwarty   spełniający   to   też jest otwarty.

Baza i podbaza topologii

edytuj

Rodzina wszystkich zbiorów otwartych tworzy topologię przestrzeni, często jednak w tej rodzinie wyróżnia podrodziny:

  • baza przestrzeni topologicznej – podrodzina topologii, z której za pomocą sumowania mnogościowego elementów bazy można otrzymać dowolny zbiór otwarty,
  • Podbaza przestrzeni topologicznej – podrodzina bazy, z której za pomocą skończnego mnożenia mnogościowego elementów podbazy można otrzymać dowolny zbiór z bazy.

Przykłady

edytuj
 
Przykład zbioru domkniętego   na płaszczyźnie (nie jest to zbiór otwarty, bo dla punktów   brzegu zbioru   nie istnieją zbiory otwarte całkowicie zawarte w   np. otoczenia punktów  ).
  1. Na prostej   ze standardową topologią zbiorami otwartymi są przedziały otwarte.
    Np. przedział   jest otwarty, gdyż dla każdego punktu   istnieje „kula otwarta”   o środku w   zawarta w   np. możemy przyjąć   równe połowie mniejszej z odległości danego punktu od brzegów przedziału,   Z drugiej strony przedział   nie jest zbiorem otwartym, bo dla punktów brzegowych   każde ich otoczenie zawiera punkty spoza przedziału  
    Zgodnie z aksjomatami suma dowolnej rodziny przedziałów otwartych jest zbiorem otwartym. Jest też odwrotnie – każdy zbiór otwarty na prostej jest sumą pewnych przedziałów otwartych, co oznacza, że rodzina przedziałów otwartych jest bazą tej przestrzeni.
  2. Na płaszczyźnie euklidesowej zbiorem otwartym jest np. prostokąt bez brzegu
 
zaś prostokąt
 
nie jest otwarty w   gdyż dla punktów brzegowych prostokąta nie istnieją zbiory otwarte w nim zawarte (prostokąt ten jest de facto domknięty, zaś jego dopełnienie jest zbiorem otwartym).
  1. Na prostej z topologią strzałki zbiorami otwartymi są przedziały postaci  

Przypisy

edytuj
  1. Witold Kołodziej, Analiza matematyczna, PWN, Warszawa 2009, s. 71–72.
  2. Zbiór otwarty, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-09-15].

Bibliografia

edytuj

Linki zewnętrzne

edytuj
  • Eric W. Weisstein, Open Set, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2022-10-09].