Grupa trywialna

Grupa trywialna[a]grupa składająca się wyłącznie z jednego elementu; tego rodzaju grupy są najmniejszymi w sensie liczebności (tj. rzędu) możliwymi grupami[b].

PrzykładyEdytuj

Istnieje wiele tak scharakteryzowanych grup, np.:

wszystkie one mają tę samą strukturę, tzn. są izomorficzne.

Dzieje się tak również dlatego, że w dowolnym zbiorze jednoelementowym   można wprowadzić jedno i tylko jedno działanie dwuargumentowe   które uczyniłoby z niego grupę[f]. Wówczas wzór

 

opisuje wszystkie w niej zależności; w szczególności, iż   pełni rolę elementu neutralnego oraz odwrotnego względem siebie. W związku z powyższym często utożsamia się wszystkie grupy jednoelementowe oznaczając je wspólnym symbolem, np.   czy   (w notacji multiplikatywnej) albo   (w notacji addytywnej).

WłasnościEdytuj

Każda grupa trywialna jest cykliczna, gdyż jest generowana przez element neutralny (przyjmuje się również, że generuje ją także zbiór pusty). Jako taka jest ona zatem: przemienna (abelowa), a ponadto doskonała, pełna, nilpotentna oraz rozwiązalna; dodatkowo jest to jedyna grupa jednocześnie torsyjna i beztorsyjna, przyjmuje się również, że ma zerową rangę.

W dowolnej grupie można wyróżnić jedną i tylko jedną podgrupę, która sama w sobie jest grupą trywialną: składa się ona z jej elementu neutralnego i nazywa podgrupą trywialną tej grupy.

UwagiEdytuj

  1. Zob. trywialność w matematyce.
  2. Grupa nie może być określona na zbiorze pustym, gdyż jeden z jej aksjomatów wymaga wyróżnienia elementu pełniącego rolę elementu neutralnego.
  3. W obu przypadkach można użyć działań o dowolnym module, a nawet standardowych działań arytmetycznych.
  4. Ogólniej: dowolnym ciałem.
  5. Grupa permutacji   (nazywana też grupą bijekcji lub grupą symetryczną) jest tożsama z grupą alternującą  
    • grupą diedralną   (przy założeniu konstrukcji na wychodzącej od grup przekształceń).
  6. Zob. grupa wolna.