Przestrzeń zupełna

typ przestrzeni w matematyce

Przestrzeń metryczna zupełnaprzestrzeń metryczna o takiej własności, że każdy ciąg Cauchy’ego utworzony z punktów tej przestrzeni ma granicę w punkcie należącym do tej przestrzeni[1].

Przestrzeń nazywa się niezupełną, jeśli istnieje choć jeden ciąg utworzony z punktów tej przestrzeni, którego granica nie należy do tej przestrzeni. Np. przestrzeń liczb wymiernych z metryką euklidesową nie jest zupełna, gdyż np. można utworzyć ciąg liczb wymiernych, który jest zbieżny do liczby , która jest niewymierna (patrz przykłady poniżej). Przestrzeń niezupełną można uzupełnić o „brakujące” punkty tak, aby stała się zupełna. Np. zbiór liczb wymiernych uzupełniony o „brakujące” punkty staje się zbiorem liczb rzeczywistych.

Pojęcie zupełności wymaga istnienia metryki, pozwalającej określać granice ciągów – dlatego można je definiować tylko dla przestrzeni metrycznych. W szerszej klasie przestrzeni topologicznych, w ogólności niemetryzowalnych, wprowadza się analogiczne pojęcie zwartości przestrzeni.

Przykłady

edytuj

Przestrzenie zupełne

edytuj
  1. Przestrzenie euklidesowe   n-wymiarowe z metryką euklidesową są przestrzeniami zupełnymi.
  2. Dowolny zbiór z topologią dyskretną jest przestrzenią metryzowalną w sposób zupełny przez metrykę dyskretną.
  3. Z definicji przestrzenie Banachaprzestrzeniami unormowanymi, które są zupełne.
  4. Szerszą klasą zupełnych przestrzeni liniowo-metrycznychF-przestrzenie.

Przestrzenie niezupełne

edytuj
  1. Dowolny przedział otwarty jedno- lub dwustronnie z metryką euklidesową nie jest zupełny. Np. przedział   nie jest zupełny, gdyż np. ciąg   jest ciągiem Cauchy’ego w nim zawartym, ale jego granica = 0 nie należy do tego przedziału.
  2. Zbiór liczb wymiernych   nie jest zupełny, gdyż np.
    • ciąg   oraz   jest ciągiem Cauchy’ego liczb wymiernych, ale jego granicą jest liczba niewymierna =  
    • ciąg     jest ciągiem Cauchy’ego liczb wymiernych, ale jego granicą jest liczba niewymierna =   (liczba Nepera).

Zupełność jako niezmiennik

edytuj

Tw. 1 Zupełność jest niezmiennikiem metrycznym, tzn. jest zachowywana przy izometriach.

Tw. 2 Zupełność nie jest niezmiennikiem topologicznym.

Np. zbiór liczb rzeczywistych   oraz dowolny przedział obustronnie otwarty   są przestrzeniami wzajemnie homeomorficznymi (więc są to przestrzenie topologicznie nieodróżnialne); z drugiej strony zbiór liczb rzeczywistych jest przestrzenią zupełną, zaś przedział otwarty   nie jest.

Dalsze własności

edytuj

Tw. 3 (Cantora) Przestrzeń jest zupełna   każdy zstępujący ciąg niepustych zbiorów domkniętych o średnicach dążących do zera ma niepuste przecięcie.

Tw. 4 W przestrzeni metrycznej zupełnej przeliczalna suma domkniętych zbiorów brzegowych jest zbiorem brzegowym.

Tw. 5 Przestrzeń metryczna jest zupełna i całkowicie ograniczona   przestrzeń metryczna jest zwarta.

Tw. 6 Każda przestrzeń metryczna zupełna jest zupełna w sensie Čecha.

Ta sekcja jest niekompletna. Jeśli możesz, rozbuduj ją.

Twierdzenie Hausdorffa

edytuj

Tw. Hausdorffa (o uzupełnieniu przestrzeni metrycznej)

  1. Dla każdej przestrzeni metrycznej   istnieje przestrzeń metryczna zupełna   oraz zanurzenie izometryczne   dla którego   jest gęstą podprzestrzenią   Przestrzeń   nazywa się uzupełnieniem przestrzeni  
  2. Ponadto jeśli   jest przestrzenią zupełną oraz istnieje izometryczne zanurzenie   dla którego   jest gęstą podprzestrzenią   to   i   są izometryczne.

Innymi słowy:

  • Każda przestrzeń metryczna ma jedyne uzupełnienie – z dokładnością do izometrii.
Ta sekcja jest niekompletna. Jeśli możesz, rozbuduj ją.

Zobacz też

edytuj

Przypisy

edytuj
  1. I. Przestrzenie metryczne. W: Janina Wolska-Bochenek, Andrzej Borzymowski, Jerzy Chmaj, Magdalena Tryjarska: Zarys teorii równań całkowych i równań różniczkowych cząstkowych. Warszawa: Państwowe Wydawnictwo Naukowe, 1981. ISBN 83-01-01693-0.

Bibliografia

edytuj
  • W. Kołodziej, Analiza matematyczna, PWN, Warszawa 2009.