Układ współrzędnych biegunowych (układ współrzędnych polarnych) – układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt zwany biegunem oraz półprostą o początku w punkcie zwaną osią biegunową.
Cavalieri[3] użył współrzędnych biegunowych aby wyznaczyć pole obszaru ograniczonego spiralą Archimedesa (a ściślej mówiąc jej pierwszym „obrotem”).
W 1647 de Saint-Vincent opublikował pracę, w której używał współrzędnych biegunowych i twierdził, że znał tę metodę już w 1625.
W 1658, Blaise Pascal używa układu biegunowego w wyznaczeniu długości pewnych łuków. Trzy lata później podobnej metody użył szkocki matematyk James Gregory.
Isaac Newton[4] dyskutuje różne układy współrzędnych i w pewnych przypadkach używa układu biegunowego.
Za twórcę biegunowego układu współrzędnych w jego współczesnej formie uważa się Jakoba Bernoulliego, który używał tego układu w badaniach krzywizny pewnych krzywych.
Dla szeregu krzywych algebraicznych ich równania przedstawione w układzie biegunowym cechują się dużą symetrią lub pewną prostotą. Równania te nazywamy równaniami biegunowymi krzywych.
Krzywa znana pod nazwą róży lub róży polarnej opisana jest przez równanie
gdzie jest dowolną stałą, jest parametrem wyznaczającym długość „płatków” róży, a jest parametrem wyznaczającym ilość i formę „płatków” róży.
Jeśli jest nieparzystąliczbą całkowitą, to róża będzie miała płatków, a jeśli jest parzystą liczbą całkowitą, to róża będzie miała płatków. Dla innych wartości kształt krzywej może być bardziej skomplikowany.
Parametry w powyższym równaniu odpowiedzialne są za kształt spirali: zmiana spowoduje obrócenie krzywej, a wartość wyznacza odległość pomiędzy ramionami.
Prosta radialna, tzn. prosta przechodząca przez biegun, jest zadana przez równanie
gdzie to nachylenie prostej.
Prosta nieradialna, która jest prostopadła do prostej radialnej
i przecina ją w punkcie zadana jest przez równanie
Pole powierzchni ograniczonej wykresem funkcjiEdytuj
Tak jak w układzie kartezjańskim powierzchnię wykresu funkcji można podzielić na prostokąty o wymiarach gdzie jest wartością funkcji dla argumentu zaś jest różniczką tegoż argumentu, można poprzez analogię w układzie współrzędnych biegunowych, podzielić powierzchnię wykresu funkcji na trójkąty równoramienne, których wierzchołki zawarte pomiędzy ich ramionami znajdują się w biegunie, drugie są częścią wykresu, zaś trzecie znajdują się obok drugich i jednocześnie w tej samej odległości od bieguna, co te drugie, przy czym długość obu ramion jest równa gdzie jest wartością funkcji dla argumentu zaś kąt zawarty pomiędzy ramionami wynosi gdzie jest różniczką tegoż argumentu. Skorzystamy tutaj z jednego ze wzorów na pole powierzchni trójkąta, które jest równe połowie iloczynu długości jego ramion i sinusa kąta zawartego między nimi. W naszym przypadku różniczka powierzchni będzie równa:
Ponieważ otrzymujemy:
Tak więc pole powierzchni ograniczonej wykresem funkcji wyraża się wzorem:
W układzie współrzędnych biegunowych, powierzchnię wykresu funkcji można podzielić na trójkąty, których wierzchołki zawarte pomiędzy ich ramionami znajdują się w biegunie, zaś 2 pozostałe: i są częścią wykresu i znajdują się obok siebie, przy czym długość pierwszego ramienia wynosi drugiego dla argumentu długość podstawy jest różniczką naszego łuku, a więc oznaczona jako zaś kąt zawarty pomiędzy ramionami wynosi gdzie jest różniczką tegoż argumentu. Na ramieniu umieszczamy punkt który dzieli to ramię w ten sposób, że zaś W ten sposób podzieliliśmy trójkąt na 2 mniejsze: równoramienny (o podstawie ) i Kąt oznaczmy jako zaś kąt – jako Kąty i znajdują się w trójkącie równoramiennym, tak więc suma ich wszystkich jest równa
Ponieważ więc:
Kąty i są względem siebie przyległe, tak więc ich suma jest równa
Ponieważ więc:
Skoro więc kąt znajduje się w trójkącie to trójkąt ten można uznać za prostokątny, a skoro tworzą go boki i to muszą one spełniać twierdzenie Pitagorasa:
Użyteczność postaci trygonometrycznej i wykładniczej liczb zespolonych wynika m.in. z faktu, że mnożenie, dzielenie i potęgowanie liczb w tych postaciach jest szczególnie proste:
↑Granino A. Korn, Theresa M. Korn: Mathematical Handbook for Scientists and Engineers. Wyd. 2. Mineola, New York: Dover Publications, 2000, s. 35. ISBN 0-486-41147-8.